Bogomolov–Sommese vanishing theorem

From Wikipedia, the free encyclopedia

In algebraic geometry, the Bogomolov–Sommese vanishing theorem is a result related to the Kodaira–Itaka dimension. It is named after Fedor Bogomolov and Andrew Sommese. Its statement has differing versions:

Bogomolov–Sommese vanishing theorem for snc pair:[1][2][3][4] Let X be a projective manifold (smooth projective variety), D a simple normal crossing divisor (snc divisor) and an invertible subsheaf. Then the Kodaira–Itaka dimension is not greater than p.

This result is equivalent to the statement that:[5]

for every complex projective snc pair and every invertible sheaf with .

Therefore, this theorem is called the vanishing theorem.

Bogomolov–Sommese vanishing theorem for lc pair:[6][7] Let (X,D) be a log canonical pair, where X is projective. If is a -Cartier reflexive subsheaf of rank one,[8] then .

See also[edit]

Notes[edit]

  1. ^ (Michałek 2012)
  2. ^ (Greb, Kebekus & Kovács 2010)
  3. ^ (Esnault & Viehweg 1992, Corollary 6.9)
  4. ^ (Kebekus 2013, Theorem 2.17)
  5. ^ (Graf 2015)
  6. ^ (Greb et al. 2011, Theorem 7.2)
  7. ^ (Kebekus 2013, Corollary 4.14)
  8. ^ (Greb et al. 2011, Definition 2.20.)

References[edit]

  • Esnault, Hélène; Viehweg, Eckart (1992). "Differential forms and higher direct images". Lectures on Vanishing Theorems. pp. 54–64. doi:10.1007/978-3-0348-8600-0_7. ISBN 978-3-7643-2822-1.
  • Graf, Patrick (2015). "Bogomolov–Sommese vanishing on log canonical pairs". Journal für die reine und angewandte Mathematik (Crelle's Journal). 2015 (702). arXiv:1210.0421. doi:10.1515/crelle-2013-0031. S2CID 119627680.
  • Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J. (2010). "Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties". Compositio Mathematica. 146: 193–219. arXiv:0808.3647. doi:10.1112/S0010437X09004321. S2CID 1474399.
  • Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J.; Peternell, Thomas (2011). "Differential forms on log canonical spaces" (PDF). Publications Mathématiques de l'IHÉS. 114: 87–169. arXiv:1003.2913. doi:10.1007/s10240-011-0036-0. S2CID 115177340.
  • Kebekus, Stefan (2013). "Differential forms on singular spaces, the minimal model program, and hyperbolicity of moduli stacks". Handbook of Moduli II. Advanced Lectures in Mathematics Volume 25. International Press of Boston, Inc. pp. 71–113. arXiv:1107.4239. ISBN 9781571462589.
  • Michałek, Mateusz (2012). "Notes on Kebekus' lectures on differential forms on singular spaces" (PDF). Contributions to Algebraic Geometry. EMS Series of Congress Reports. pp. 375–388. doi:10.4171/114-1/14. ISBN 978-3-03719-114-9.

Further reading[edit]