Van der Waals integration

From Wikipedia, the free encyclopedia

van der Waals integration is a physical assembly strategy, in which prefabricated building blocks are physically assembled together through weak van der Waals interactions.[1] This concept was originally proposed in two-dimensional materials research community to construct 2D van der Waals heterostructures.[2][3]

A key benefit of van der Waals integration is that it offers an alternative way to integrate highly disparate material systems with unprecedented degrees of freedom, regardless of their crystal structures, lattice parameters, or orientation.[3] As this physical assembly method does not involve one-to-one chemical bonds between adjacent layers,[1] the van der Waals integration approach can thus enable the creation of a wide spectrum of series of artificial van der Waals heterostructures and novel moiré superlattices through layer transfer.[3] Highly disparate material systems with diverse functionalities can be integrated together with atomically clean and electronically sharp interfaces.,[1] eliminating the rigorous lattice matching and process compatibility requirements that applied epitaxy[3] This approach has proven fruitful in 2D photonics,[4] polariton physics,[1][5] hetero-integrated photonics,[3] and wearable optoelectronic applications.[1][6]

References[edit]

  1. ^ a b c d e Liu, Yuan; Huang, Yu; Duan, Xiangfeng (March 2019). "Van der Waals integration before and beyond two-dimensional materials". Nature. 567 (7748): 323–333. doi:10.1038/s41586-019-1013-x. ISSN 1476-4687.
  2. ^ Geim, A. K.; Grigorieva, I. V. (July 2013). "Van der Waals heterostructures". Nature. 499 (7459): 419–425. arXiv:1307.6718. doi:10.1038/nature12385. ISSN 1476-4687.
  3. ^ a b c d e Meng, Yuan; Feng, Jiangang; Han, Sangmoon; Xu, Zhihao; Mao, Wenbo; Zhang, Tan; Kim, Justin S.; Roh, Ilpyo; Zhao, Yepin; Kim, Dong-Hwan; Yang, Yang; Lee, Jin-Wook; Yang, Lan; Qiu, Cheng-Wei; Bae, Sang-Hoon (2023-04-21). "Photonic van der Waals integration from 2D materials to 3D nanomembranes". Nature Reviews Materials: 1–20. doi:10.1038/s41578-023-00558-w. ISSN 2058-8437.
  4. ^ Xia, Fengnian; Wang, Han; Xiao, Di; Dubey, Madan; Ramasubramaniam, Ashwin (December 2014). "Two-dimensional material nanophotonics". Nature Photonics. 8 (12): 899–907. arXiv:1410.3882. doi:10.1038/nphoton.2014.271. ISSN 1749-4893.
  5. ^ Zhang, Qing; Hu, Guangwei; Ma, Weiliang; Li, Peining; Krasnok, Alex; Hillenbrand, Rainer; Alù, Andrea; Qiu, Cheng-Wei (September 2021). "Interface nano-optics with van der Waals polaritons". Nature. 597 (7875): 187–195. doi:10.1038/s41586-021-03581-5. ISSN 1476-4687.
  6. ^ Bae, Sang-Hoon; Kum, Hyun; Kong, Wei; Kim, Yunjo; Choi, Chanyeol; Lee, Byunghun; Lin, Peng; Park, Yongmo; Kim, Jeehwan (June 2019). "Integration of bulk materials with two-dimensional materials for physical coupling and applications". Nature Materials. 18 (6): 550–560. doi:10.1038/s41563-019-0335-2. ISSN 1476-4660.