Thermal shock synthesis

From Wikipedia, the free encyclopedia

Thermal shock synthesis (TSS) is a method in which materials are synthesized via rapid, high-temperature heating. In the TSS process, temperatures as high as 3000 K are applied for a duration of just seconds or milliseconds, followed by rapid cooling (a TSS image shown in Fig. 1).[1][2][3] In this regard, TSS is distinct from conventional high-temperature syntheses that feature slow and near-equilibrium heating at limited temperature ranges (e.g., 1500 K for furnace heating) for extended periods of time (typically hours) and generally slow heating and cooling (~10 K/min).

TSS utilizes high temperature to drive reactions at extreme and non-equilibrium conditions. Additionally, the use of the ultra-high temperature can dramatically increase reaction rates for rapid material production.[1][4] As a result of these characteristics, TSS is particularly applicable for the discovery of new reactions and materials and enabling rapid manufacturing.

Realization[edit]

The TSS method was invented by Dr. Liangbing Hu and his team at the University of Maryland, College Park. The technology is also patented.[5][6] The TSS was first realized by Joule heating of carbon materials to a high temperature and rapidly quenched with a short duration, which are controlled by electric power with a high temporal resolution.[1][3] The essence of TSS is the ability to precisely control the high temperature to ensure rapid “shock” heating. Generally, the temperature, duration, and ramping rate can be independently controlled for specific heating requirements.

Since high-temperature heating is ubiquitously used for reactions and materials synthesis, innovative TSS processes have been discovered and demonstrated, including microwave, laser, rapid radiative heating, and discharge flash heating,[4][7][8][9][10][11] enabling synthesis of diverse emerging materials, such as single atom and alloyed catalysts, high entropy alloy nanoparticles, nanoscale composites, battery cathodes and anodes, and high-quality graphene, etc.[1][4][7][8][9][10][12][13][14]

References[edit]

  1. ^ a b c d Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei (2018-03-30). "Carbothermal shock synthesis of high-entropy-alloy nanoparticles". Science. 359 (6383): 1489–1494. doi:10.1126/science.aan5412. ISSN 0036-8075. PMID 29599236.
  2. ^ Bao, Wenzhong; Pickel, Andrea D.; Zhang, Qing; Chen, Yanan; Yao, Yonggang; Wan, Jiayu; Fu, Kun(Kelvin); Wang, Yibo; Dai, Jiaqi; Zhu, Hongli; Drew, Dennis (2016). "Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper". Advanced Materials. 28 (23): 4684–4691. doi:10.1002/adma.201506116. ISSN 1521-4095. PMID 27000725. S2CID 33143639.
  3. ^ a b Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun (2016-08-12). "Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films". Nature Communications. 7 (1): 12332. doi:10.1038/ncomms12332. ISSN 2041-1723. PMC 4990634. PMID 27515900.
  4. ^ a b c Luong, Duy X.; Bets, Ksenia V.; Algozeeb, Wala Ali; Stanford, Michael G.; Kittrell, Carter; Chen, Weiyin; Salvatierra, Rodrigo V.; Ren, Muqing; McHugh, Emily A.; Advincula, Paul A.; Wang, Zhe (2020). "Gram-scale bottom-up flash graphene synthesis". Nature. 577 (7792): 647–651. doi:10.1038/s41586-020-1938-0. ISSN 1476-4687. PMID 31988511.
  5. ^ US 2018369771, Hu, Liangbing; Chen, Yanan & Yao, Yonggang, "Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock", published 2018-12-27, assigned to University of Maryland 
  6. ^ US 11193191, Yao, Yonggang & Hu, Liangbing, "Thermal shock synthesis of multielement nanoparticles", published 2021-12-07, assigned to University of Maryland 
  7. ^ a b Wang, Xizheng; Huang, Zhennan; Yao, Yonggang; Qiao, Haiyu; Zhong, Geng; Pei, Yong; Zheng, Chaolun; Kline, Dylan; Xia, Qinqin; Lin, Zhiwei; Dai, Jiaqi (2020-05-01). "Continuous 2000 K droplet-to-particle synthesis". Materials Today. 35: 106–114. doi:10.1016/j.mattod.2019.11.004. ISSN 1369-7021.
  8. ^ a b Gao, Shaojie; Hao, Shaoyun; Huang, Zhennan; Yuan, Yifei; Han, Song; Lei, Lecheng; Zhang, Xingwang; Shahbazian-Yassar, Reza; Lu, Jun (2020-04-24). "Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis". Nature Communications. 11 (1): 2016. doi:10.1038/s41467-020-15934-1. ISSN 2041-1723. PMC 7181682. PMID 32332743.
  9. ^ a b Voiry, Damien; Yang, Jieun; Kupferberg, Jacob; Fullon, Raymond; Lee, Calvin; Jeong, Hu Young; Shin, Hyeon Suk; Chhowalla, Manish (2016-09-23). "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide". Science. 353 (6306): 1413–1416. doi:10.1126/science.aah3398. ISSN 0036-8075. PMID 27708034.
  10. ^ a b Chen, Xianjue; Bo, Xin; Ren, Wenhao; Chen, Sheng; Zhao, Chuan (2019-06-27). "Microwave-assisted shock synthesis of diverse ultrathin graphene-derived materials". Materials Chemistry Frontiers. 3 (7): 1433–1439. doi:10.1039/C9QM00113A. ISSN 2052-1537. S2CID 164333842.
  11. ^ Yang, Yong; Yao, Yonggang; Kline, Dylan J.; Li, Tangyuan; Ghildiyal, Pankaj; Wang, Haiyang; Hu, Liangbing; Zachariah, Michael R. (2020-03-27). "Rapid Laser Pulse Synthesis of Supported Metal Nanoclusters with Kinetically Tunable Size and Surface Density for Electrocatalytic Hydrogen Evolution". ACS Applied Nano Materials. 3 (3): 2959–2968. doi:10.1021/acsanm.0c00238. S2CID 213577236.
  12. ^ Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A.; Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Hu, Liangbing (2016-09-14). "Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock". Nano Letters. 16 (9): 5553–5558. doi:10.1021/acs.nanolett.6b02096. ISSN 1530-6984. PMID 27505433.
  13. ^ Xie, Pengfei; Yao, Yonggang; Huang, Zhennan; Liu, Zhenyu; Zhang, Junlei; Li, Tangyuan; Wang, Guofeng; Shahbazian-Yassar, Reza; Hu, Liangbing; Wang, Chao (2019-09-05). "Highly efficient decomposition of ammonia using high-entropy alloy catalysts". Nature Communications. 10 (1): 4011. doi:10.1038/s41467-019-11848-9. ISSN 2041-1723. PMC 6728353. PMID 31488814.
  14. ^ Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Wu, Lianping; Ma, Lu; Li, Tangyuan; Pang, Zhenqian; Jiao, Miaolun; Liang, Zhiqiang; Gao, Jinlong; He, Yang (2019). "High temperature shockwave stabilized single atoms". Nature Nanotechnology. 14 (9): 851–857. doi:10.1038/s41565-019-0518-7. ISSN 1748-3395. OSTI 1575071. PMID 31406363. S2CID 199543004.

External links[edit]

High-entropy-alloy nanoparticles