Fundamental vector field

From Wikipedia, the free encyclopedia

In the study of mathematics and especially differential geometry, fundamental vector fields are an instrument that describes the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.

Motivation[edit]

Important to applications in mathematics and physics[1] is the notion of a flow on a manifold. In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to . More precisely, given one is interested in curves such that:

for which local solutions are guaranteed by the Existence and Uniqueness Theorem of Ordinary Differential Equations. If is furthermore a complete vector field, then the flow of , defined as the collection of all integral curves for , is a diffeomorphism of . The flow given by is in fact an action of the additive Lie group on .

Conversely, every smooth action defines a complete vector field via the equation:

It is then a simple result[2] that there is a bijective correspondence between actions on and complete vector fields on .

In the language of flow theory, the vector field is called the infinitesimal generator.[3] Intuitively, the behaviour of the flow at each point corresponds to the "direction" indicated by the vector field. It is a natural question to ask whether one may establish a similar correspondence between vector fields and more arbitrary Lie group actions on .

Definition[edit]

Let be a Lie group with corresponding Lie algebra . Furthermore, let be a smooth manifold endowed with a smooth action . Denote the map such that , called the orbit map of corresponding to .[4] For , the fundamental vector field corresponding to is any of the following equivalent definitions:[2][4][5]

where is the differential of a smooth map and is the zero vector in the vector space .

The map can then be shown to be a Lie algebra homomorphism.[5]

Applications[edit]

Lie groups[edit]

The Lie algebra of a Lie group may be identified with either the left- or right-invariant vector fields on . It is a well-known result[3] that such vector fields are isomorphic to , the tangent space at identity. In fact, if we let act on itself via right-multiplication, the corresponding fundamental vector fields are precisely the left-invariant vector fields.

Hamiltonian group actions[edit]

In the motivation, it was shown that there is a bijective correspondence between smooth actions and complete vector fields. Similarly, there is a bijective correspondence between symplectic actions (the induced diffeomorphisms are all symplectomorphisms) and complete symplectic vector fields.

A closely related idea is that of Hamiltonian vector fields. Given a symplectic manifold , we say that is a Hamiltonian vector field if there exists a smooth function satisfying:

where the map is the interior product. This motivatives the definition of a Hamiltonian group action as follows: If is a Lie group with Lie algebra and is a group action of on a smooth manifold , then we say that is a Hamiltonian group action if there exists a moment map such that for each: ,

where and is the fundamental vector field of

References[edit]

  1. ^ Hou, Bo-Yu (1997), Differential Geometry for Physicists, World Scientific Publishing Company, ISBN 978-9810231057
  2. ^ a b Ana Cannas da Silva (2008). Lectures on Symplectic Geometry. Springer. ISBN 978-3540421955.
  3. ^ a b Lee, John (2003). Introduction to Smooth Manifolds. Springer. ISBN 0-387-95448-1.
  4. ^ a b Audin, Michèle (2004). Torus Actions on Symplectic manifolds. Birkhäuser. ISBN 3-7643-2176-8.
  5. ^ a b Libermann, Paulette; Marle, Charles-Michel (1987). Symplectic Geometry and Analytical Mechanics. Springer. ISBN 978-9027724380.