Yttrium stannides

From Wikipedia, the free encyclopedia

Yttrium and tin form several yttrium stannide intermetallic compounds.

The most tin-rich is YSn3, followed by YSn2, Y11Sn10, Y5Sn4, and Y5Sn3. None survives above 1,940 °C (3,520 °F), at which point Y5Sn3 melts congruently.[1] The enthalpy of dissolution is similar to the stannides of other late lanthanoids,[2] and the intermetallics' overall enthalpies of formation resemble silicides, not germanides or plumbides.[3]

YSn3 is a electrical superconductor below 7 K (−447.07 °F).[4] It was originally thought to be a Type I superconductor, but 7 K may actually be the strong-coupling regime, despite the low temperature.[5] The density of electronic states has a local maximum at the Fermi level, composed of tin p and d orbitals.[4] The intermetallic is difficult to form, slowly crystallizing from a mixture of Sn and YSn2 above 515 °C (959 °F).[1] This may arise from competing allotropes near room temperature: although its crystal structure is certainly cubic, simulation indicates that both the tricopper auride (Pm3m) or aluminum-titanium alloy (I4/mmm) structures are stable under standard conditions.[6]

YSn2 has unit cell sized 4.39×16.34×4.30 Å. Like DySn2, it exhibits the zirconium disilicide crystal structure:[1] layers of yttrium rhombohedra encapsulating tin atoms alternate with flat planes of tin. Doping with nickel puckers the planes, and Mössbauer spectroscopy suggests that it removes electron density from the tin s orbitals.[7]

Y5Sn3 has the hexagonal manganese silicide crystal structure, with unit cell 8.88×6.52×0.73 Å.[8]

References[edit]

  1. ^ a b c Schmidt, F.A.; McMasters, O.D. (May 1968). "Yttrium-tin alloy system". Journal of the Less Common Metals. 15 (1): 1–11. doi:10.1016/0022-5088(68)90002-7.
  2. ^ Colinet, C.; Pasturel, A.; Percheron-Guégan, A.; Achard, J.C. (October 1984). "Experimental and calculated enthalpies of formation of rare earth-tin alloys". Journal of the Less Common Metals. 102 (2): 167–177. doi:10.1016/0022-5088(84)90313-8.
  3. ^ Sidorko, V. R.; Bulanova, M. V.; Meleshevich, K. A. (May 2005). "Physicochemical Interaction in Systems Formed by Trivalent REM with Group IV p-Elements. IV. Phase Thermodynamics". Powder Metallurgy and Metal Ceramics. 44 (5–6): 253–258. doi:10.1007/s11106-005-0089-z. ISSN 1068-1302.
  4. ^ a b Sharma, Ramesh; Ahmed, Gulzar; Sharma, Yamini (September 2017). "Intermediate coupled superconductivity in yttrium intermetallics". Physica C: Superconductivity and its Applications. 540: 1–15. doi:10.1016/j.physc.2017.07.002.
  5. ^ Kawashima, K.; Maruyama, M.; Fukuma, M.; Akimitsu, J. (2010-09-23). "Superconducting state in YSn 3 with a AuCu 3 -type structure". Physical Review B. 82 (9). doi:10.1103/PhysRevB.82.094517. ISSN 1098-0121.
  6. ^ Hedjar, Yazid; Saib, Salima; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Bouarissa, Nadir (October 2021). "A Pseudopotential Study of Structural, Mechanical, and Lattice Dynamics Behavior of the Binary Intermetallic Yttrium Tristannide YSn 3". physica status solidi (b). 258 (10). doi:10.1002/pssb.202100219. ISSN 0370-1972.
  7. ^ Peter Sebastian, C.; Pöttgen, Rainer (May 2007). "The Stannides YNi x Sn2 (x = 0, 0.14, 0.21, 1) – Syntheses, Structure, and 119Sn Mössbauer Spectroscopy". Monatshefte für Chemie - Chemical Monthly. 138 (5): 381–388. doi:10.1007/s00706-007-0597-2. ISSN 0026-9247.
  8. ^ Jeitschko, W.; Parthé, E. (1965-08-10). "Stannides and plumbides of Sc, Y, La and Ce with D88 structure". Acta Crystallographica. 19 (2): 275–277. doi:10.1107/S0365110X65003213. ISSN 0365-110X.