Orthanilic acid

From Wikipedia, the free encyclopedia
Orthanilic acid
Names
Preferred IUPAC name
2-Aminobenzene-1-sulfonic acid
Other names
Orthanilic acid, 2-Aminobenzenesulfonic acid
o-Aminobenzenesulfonic acid
Aniline-2-sulfonic acid
88-21-1
Aniline-o-sulfonic acid[1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.646 Edit this at Wikidata
EC Number
  • 201-810-9
KEGG
UNII
  • InChI=1S/C6H7NO3S/c7-5-3-1-2-4-6(5)11(8,9)10/h1-4H,7H2,(H,8,9,10)
    Key: ZMCHBSMFKQYNKA-UHFFFAOYSA-N
  • InChI=1/C6H7NO3S/c7-5-3-1-2-4-6(5)11(8,9)10/h1-4H,7H2,(H,8,9,10)
    Key: ZMCHBSMFKQYNKA-UHFFFAOYAS
  • c1ccc(c(c1)N)S(=O)(=O)O
Properties
C6H7NO3S
Molar mass 173.19 g·mol−1
Acidity (pKa) 2.46 (H2O)[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Orthanilic acid (2-aminobenzenesulfonic acid) is a biological acid with roles in benzoate degradation and microbial metabolism in diverse environments.

Orthanilic acid promotes reverse turn formation in peptides, inducing a folded conformation[3][4] when incorporated into peptide sequences (Xaa-SAnt-Yaa), showing robust 11-membered-ring hydrogen-bonding.

Orthanilic acid is a structural component of some azo dyes which consequently have poor bacterial degradation.[5]

Orthanilic acids have also been found to affect cardiac tension.[6][7]

References[edit]

  1. ^ "PubChem entry". Retrieved 2014-05-17.
  2. ^ Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. pp. 5–88. ISBN 978-1498754286.
  3. ^ Kale, Sangram S.; Priya, Gowri; Kotmale, Amol S.; Gawade, Rupesh L.; Puranik, Vedavati G.; Rajamohanan, P. R.; Sanjayan, Gangadhar J. (March 2013). "Orthanilic acid-promoted reverse turn formation in peptides". Chem. Commun. 49 (22): 2222–4. doi:10.1039/C3CC40522B. PMID 23392615.
  4. ^ Kale, Sangram S.; Priya, Gowri; Kotmale, Amol S.; Gawade, Rupesh L.; Puranik, Vedavati G.; Rajamohanan, P. R.; Sanjayan, Gangadhar J. (2013). "Orthanilic acid-promoted reverse turn formation in peptides". Chemical Communications. 49 (22): 2222–4. doi:10.1039/C3CC40522B. PMID 23392615.
  5. ^ Tan, Nico C. G.; Leeuwen, Annemarie van; Voorthuizen, Ellen M. van; Slenders, Peter; Prenafeta-Boldú, Francesc X.; Temmink, Hardy; Lettinga, Gatze; Field, Jim A. (2005). "Fate and biodegradability of sulfonated aromatic amines". Biodegradation. 16 (6): 527–37. doi:10.1007/s10532-004-6593-x. PMID 15865345. S2CID 5778950.
  6. ^ Franconi, F; Bennardini, F; Campana, S; Failli, P; Matucci, R; Stendardi, I; Giotti, A (1990). "Effect of taurine, L-cysteic and orthanilic acids on cardiac tension". Progress in Clinical and Biological Research. 351: 175–84. PMID 2122477.
  7. ^ Franconi, F; Bennardini, F; Campana, S; Failli, P; Matucci, R; Stendardi, I; Giotti, A (1990). "Effect of taurine, L-cysteic and orthanilic acids on cardiac tension". Prog. Clin. Biol. Res. 351: 175–84. PMID 2122477.