2022 in reptile paleontology

From Wikipedia, the free encyclopedia
List of years in reptile paleontology
In science
2019
2020
2021
2022
2023
2024
2025
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In paleontology
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoichthyology
2019
2020
2021
2022
2023
2024
2025

This list of fossil reptiles described in 2022 is a list of new taxa of fossil reptiles that were described during the year 2022, as well as other significant discoveries and events related to reptile paleontology that occurred in 2022.

Squamates[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Abronia cuyama[1]

Sp. nov

Valid

Scarpetta & Ledesma

Miocene

Caliente Formation

 United States
( California)

A species of Abronia.

Archaeovaranus[2]

Gen. et sp. nov

Unavailable

Dong et al.

Early Eocene

Yuhuangding Formation

 China

A stem-varanid. The type species is A. lii. The electronic publication lacks registration information.

Blutwurstia[3]

Gen. et sp. nov

Valid

Smith, Bhullar & Bloch

Early Eocene

Willwood Formation

 United States
( Wyoming)

A member of Pan-Xenosaurus. The type species is B. oliviae.

Dollogekko[4]

Gen. et sp. nov

Valid

Čerňanský et al.

Early Eocene

Tienen Formation

 Belgium

A member of Gekkota. The type species is D. dormaalensis.

Eoscincus[5]

Gen. et sp. nov

Valid

Brownstein et al.

Late Jurassic (Tithonian)

Morrison Formation

 United States
( Utah)

A member of Pan-Scincoidea. The type species is E. ornatus.

Geiseleptes[6]

Gen. et sp. nov

Valid

Villa, Wings & Rabi

Eocene

 Germany

A member of the family Sphaerodactylidae. The type species is G. delfinoi.

Katariana[7]

Nom. nov

Valid

Deshmukh et al.

Early Paleocene (Danian)

Santa Lucía Formation

 Bolivia

A macrostomatan snake related to caenophidians; a replacement name for Kataria Scanferla et al. (2013).

Microteras[5]

Gen. et sp. nov

Valid

Brownstein et al.

Late Jurassic (Tithonian)

Morrison Formation

 United States
( Wyoming)

A member of Pan-Scincoidea. The type species is M. borealis.

Moqisaurus[8] Gen. et sp. nov In press Dong, Wang, & Evans Early Cretaceous (Aptian)  China A basal squamate possibly related to Liushusaurus. The type species is M. pulchrum

Powellophis[9]

Gen. et sp. nov

Garberoglio, Triviño & Albino

Paleocene

Mealla Formation

 Argentina

A madtsoiid snake. Genus includes new species P. andina.

Psammophis odysseus[10]

Sp. nov Valid Szyndlar & Georgalis Late Miocene  Spain A species of Psammophis.

Retinosaurus[11]

Gen. et sp. nov

Valid

Čerňanský et al.

Early Cretaceous (Albian)

Hkamti amber

 Myanmar

A scincomorph lizard, possibly a member of Pan-Xantusiidae. The type species is R. hkamtiensis.

Smithosaurus[12]

Gen. et sp. nov

Valid

Vasilyan et al.

Miocene

 Austria
 Germany

A member of the family Anguidae belonging to the subfamily Anguinae. The type species is S. echzellensis.

Thalassotitan[13] Gen. et sp. nov In press Longrich et al. Late Cretaceous (Maastrichtian) Ouled Abdoun Basin  Morocco A mosasaurid in the tribe Prognathodontini. The type species is T. atrox.

Research[edit]

  • A study aiming to determine whether the squamate fossil record contains reliable phylogenetic information in spite of its incompleteness is published by Woolley et al. (2022).[14]
  • The first fossil material of scincomorph lizards from the Campanian Nenjiang Formation (Jilin, China) is described by Yang et al. (2022).[15]
  • Vullo et al. (2022) reinterpret the fossil material of Jeddaherdan aleadonta as Quaternary in age, and consider it to be a fossil material of a member of the genus Uromastyx.[16]
  • First fossil material of galliwasp from Cuba reported to date is described from the Late Pleistocene of El Abrón Cave by Syromyatnikova & Aranda (2022), providing the first data on tooth and jaw morphology of Pleistocene galliwasps from Cuba.[17]
  • Fossil material of Ophisaurus fejfari and Ophisaurus spinari is described from the early Pliocene of Moldova by Syromyatnikova, Klembara & Redkozubov (2022), representing the first Pliocene records of the genus Ophisaurus in Eastern Europe, and the first record of O. fejfari from the Pliocene reported to date.[18]
  • Redescription of known fossil material of Saniwa orsmaelensis, as well as description of new fossil material from the Eocene of Belgium and France, is published by Augé et al. (2022).[19]
  • A vertebra of a monitor lizard, representing the first published record of a non-snake squamate from the Neogene of Pakistan (probably Miocene Chinji Formation), is described by Villa & Delfino (2022), who evaluate the implications of this finding for the palaeoenvironmental reconstructions of the Siwaliks during the Miocene.[20]
  • A study on the diversification of feeding and locomotory strategies of mosasauroids is published by Cross et al. (2022).[21]
  • A study on the evolution of morphofunctional diversity of mosasaurids prior to the Cretaceous–Paleogene extinction event is published by MacLaren et al. (2022), who interpret their findings as indicating that taxonomic turnover in mosasaurid community composition from Campanian to Maastrichtian was reflected by a notable global increase in morphofunctional diversity, and that mosasaurid morphofunctional diversity was in decline in multiple provincial communities in the Late Maastrichtian before the Cretaceous–Paleogene mass extinction.[22]
  • A study on the evolution of the skull in mosasaurids and early cetaceans during the first 20 million years of their evolutionary histories, testing for possible instances of ecomorphological convergence in the skulls and teeth between the groups, is published by Bennion et al. (2022).[23]
  • Revision of the known mosasaur material from South Africa is published by Woolley, Chinsamy & Caldwell (2022), who recognize the presence of at least three mosasaur taxa in the Late Cretaceous deposits of South Africa, tentatively referred to cf. Prognathodon, cf. Taniwhasaurus and cf. Plioplatecarpinae.[24]
  • A study on the individual age and life history of a halisaurine mosasaur known from a cervical vertebra from the Late Cretaceous (Campanian) Beloe Ozero locality (Saratov Oblast, Russia) is published by Grigoriev et al. (2022).[25]
  • The first occurrences of Mosasaurus hoffmannii are reported from the Ouled Abdoun Basin (Morocco) by Rempert et al. (2022), extending the known range of this species.[26]
  • Two isolated tooth crowns of a member of the genus Mosasaurus are described from the Late Cretaceous (CampanianMaastrichtian) of Cuba by Viñola-López et al. (2022), representing the first record of mosasaurs from West Indies reported to date.[27]
  • A study on the anatomy of the skull of Sanajeh indicus and on its implications for the knowledge of the evolution of features associated with wide-gaped feeding (macrostomy) in snakes, based on data from a new specimen, is published by Zaher et al. (2022).[28]
  • Wazir et al. (2022) describe an isolated dorsal vertebra of a madtsoiid snake from the Oligocene Kargil Formation of the Ladakh Molasse Group (Ladakh Himalaya), providing evidence of the survival of madtsoiids in the Indian subcontinent at least to the end of the Paleogene.[29]
  • Revision and a study on the phylogenetic affinities of Boavus is published by Onary et al. (2022).[30]
  • Chuliver, Scanferla & Smith (2022) describe a gravid female of Messelophis variatus from the Messel pit (Germany preserved with at least two embryos, documenting the first known occurrence of viviparity in a fossil snake.[31]
  • El-Hares et al. (2022) describe new fossil material of colubroidean snakes from the Eocene Birket Qarun Locality 2 (Egypt), including a vertebra of a member or a relative of the genus Procerophis (otherwise known from the early Eocene of India) and the first known caudal vertebrae of Renenutet enmerwer, as well as a vertebra representing the first record of an amphisbaenian from the Paleogene of Egypt reported to date.[32]

Ichthyosauromorphs[edit]

New Taxa[edit]

Name Novelty Status Authors Age Type Locality Location Notes Images

Baisesaurus[33]

Gen. et sp. nov

Valid

Ren et al.

Early Triassic (Olenekian)

Luolou Formation

 China

An early member of Ichthyosauromorpha . The type species is B. robustus

Eurhinosaurus quenstedti[34] Sp. nov Maisch Early Jurassic Posidonia Shale  Germany
Magnipterygius[35] Gen. et sp. nov Valid Maisch & Matzke Early Jurassic Posidonia Shale  Germany A stenopterygiid ichthyosaur. The type species is M. huenei

Nannopterygius mikhailovi[36]

Sp. nov

Valid

Yakupova & Akhmedenov

Late Jurassic

 Kazakhstan

Nannopterygius yakimenkae[36]

Sp. nov

Valid

Yakupova & Akhmedenov

Late Jurassic

 Kazakhstan

Research[edit]

  • Qiao et al. (2022) describe a new specimen of Sclerocormus from the Lower Triassic (Olenekian) Nanlinghu Formation (China), recover the clade Omphalosauridae containing Omphalosaurus, Sclerocormus and Cartorhynchus, and describe the anatomy of the feeding apparatus of omphalosaurids as indicated by data from the new specimen.[37]
  • Fossil material of ichthyopterygians, including a limb bone (probably a humerus) representing one of the largest specimens of early Spathian marine reptiles known to date, is described from the Lower Triassic Zhitkov Formation (Russky Island, Primorsky Krai, Russia) by Nakajima et al. (2022).[38]
  • Fossil material of giant ichthyosaurs is described from the Upper Triassic Kössen Formation (Switzerland) by Sander et al. (2022), who evaluate the implications of the studied fossils for the knowledge of the global distribution and ecological diversity of giant Norian and Rhaetian ichthyosaurs.[39]
  • A study on ichthyosaur vertebral centra from the Upper Jurassic Bernbjerg Formation (Greenland), aiming to determine whether vertebral ratios can be used to assign disarticulated and possibly weathered centra to a region in the vertebral column of ichthyosaurs, is published by Holm, Delsett & Alsen (2022).[40]
  • Fossil material of ichthyosaurs is described from the Valanginian and Hauterivian of Austria by Lukeneder et al. (2022), who interpret the studied fossils as representing two distinct taxa, probably with different feeding ecologies, and evaluate the implications of these fossils for the knowledge of the diversity of ichthyosaurs in the Early Cretaceous.[41]
  • Roberts, Engelschiøn & Hurum (2022) describe a new specimen of Phalarodon fraasi from the Ladinian Blanknuten Member of the Botneheia Formation (Svalbard, Norway), representing the first three-dimensional mixosaurid skull recovered from this formation.[42]
  • Kelley et al. (2022) interpret an assemblage of skeletons of Shonisaurus from the Triassic Luning Formation (Nevada, United States) as evidence of grouping behavior.[43]
  • A study on the dietary adaptations of juvenile specimens of Hauffiopteryx typicus and Stenopterygius triscissus from the Toarcian Strawberry Bank Lagerstätte (United Kingdom) is published by Jamison-Todd et al. (2022), who interpret their findings as indicating that S. triscissus had more robust rostrum and scavenged and hunting large fish or squid, while H. typicus relied more on bite speed than on bite force while hunting, and likely fished for smaller and softer prey.[44]
  • A study on the anatomy and phylogenetic relationships of "Ichthyosaurus" zetlandicus is published by Laboury et al. (2022), who transfer this species to the genus Temnodontosaurus.[45]
  • Lomax & Massare (2022) report the discovery of two casts of the first complete ichthyosaur skeleton introduced to the scientific community in 1819 by Everard Home, and assign this specimen to the genus Ichthyosaurus.[46]
  • Lomax, Sachs & Hall (2022) describe a composite ichthyosaur specimen from the collection of the Reutlingen Natural History Museum, including bones of at least three individuals recovered from the Sinemurian of Charmouth-Lyme Regis area (Dorset, United Kingdom) and from the Toarcian Posidonia Shale (Germany) as well as forged elements, and identify the hindfins and pelvic bones as fossil material of a rare species Ichthyosaurus conybeari.[47]
  • A study on the pre- and postnatal ontogenetic changes in the skull of Stenopterygius quadriscissus is published by Miedema & Maxwell (2022).[48]
  • Two ichthyosaur specimens (a nearly complete skeleton of a member of the genus Aegirosaurus and an isolated tail of an indeterminate ichthyosaur) preserved with soft tissue are described from the Upper Jurassic (Tithonian) Eichstätt Plattenkalk (Germany) by Delsett et al. (2022).[49]
  • Description of two specimens of Baptanodon natans from the Upper Jurassic (Oxfordian) Redwater Shale of the Sundance Formation (Wyoming, United States), providing new information on the morphology of the braincase of this ichthyosaur, is published by Massare & Connely (2022).[50]
  • Revision of the nomenclature of the families of Late Jurassic and Cretaceous ichthyosaurs is published by Zverkov (2022).[51]

Sauropterygians[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images
Eardasaurus[52] Gen. et sp. nov Valid Ketchum & Benson Middle Jurassic (Callovian) Oxford Clay  England A pliosaur. The type species is E. powelli

Honghesaurus[53]

Gen. et sp. nov

Valid

Xu et al.

Middle Triassic (Anisian)

Guanling Formation

 China

A pachypleurosaurid. The type species is H. longicaudalis.

Nothosaurus luopingensis[54]

Sp. nov

Valid

Shang, Li & Wang

Middle Triassic (Anisian)

Guanling Formation

 China

Plesioelasmosaurus[55] Gen. et sp. nov Schumacher & Everhart Late Cretaceous (Cenomanian) Greenhorn Limestone  United States ( Kansas) An elasmosaurid. The type species is P. walkeri

Prosantosaurus[56]

Gen. et sp. nov

Valid

Klein et al.

Middle Triassic (Ladinian)

Prosanto Formation

  Switzerland

A pachypleurosaur. The type species is P. scheffoldi.

Serpentisuchops[57]

Gen. et sp. nov

Persons, Street & Kelley

Late Cretaceous (Maastrichtian)

Pierre Shale

 United States
( Wyoming)

A member of the family Polycotylidae. The type species is S. pfisterae.

Research[edit]

  • Description of two placodont dentaries from the Muschelkalk of the Netherlands and Germany, possibly belonging to a member of the genus Placodus belonging or related to the species P. gigas, and a study on the implications of these fossils for the knowledge of the ontogenetic changes in placodont dentaries is published by Klein et al. (2022).[58]
  • Redescription of the holotype of Nothosaurus mirabilis is published by Klein, Eggmaier & Hagdorn (2022).[59]
  • Redescription of the type material of Ischyrodon meriani is published by Madzia, Sachs & Klug (2022).[60]
  • A study on the musculature of limbs of Cryptoclidus eurymerus, and on its implications of the knowledge of the locomotion of plesiosaurs, is published by Krahl et al. (2022).[61]
  • A study comparing the flipper muscle functions and the ability to twist flippers in Cryptoclidus eurymerus and extant aquatic amniotes is published by Krahl & Werneburg (2022).[62]
  • A study on the diversity and ontogenetic changes of cervical vertebral shapes in elasmosaurids is published by Brum et al. (2022).[63]
  • Fossil material of plesiosaurs with features of Leptocleididae is described from the Cretaceous Kem Kem Group (Morocco) by Bunker et al. (2022), representing the first Moroccan plesiosaur material reported from a freshwater paleoenvironment and the youngest known representatives of Leptocleididae.[64]
  • Description of new polycotylid material from the Maastrichtian La Colonia Formation (Argentina) and a study on the phylogenetic affinities of Sulcusuchus erraini is published by O'Gorman (2022).[65]
  • Evidence from molecular analyses of modern and fossil skeletal samples, interpreted as indicating that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, is presented by Wiemann et al. (2022).[66]

Turtles[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Location Notes Images

Annemys variabilis[67]

Sp. nov

Valid

Obraztsova et al.

Middle Jurassic (Bathonian)

Itat Formation

 Russia
( Krasnoyarsk Krai)

A member of the family Xinjiangchelyidae.

Appalachemys[68]

Gen. et sp. nov

In press

Gentry, Kiernan & Parham

Late Cretaceous (Santonian-Campanian)

 United States
( Alabama)

A "macrobaenid"-grade freshwater turtle. Genus includes new species A. ebersolei.

Calissounemys[69]

Gen. et sp. nov

Valid

Tong et al.

Late Cretaceous (Campanian)

 France

A member of the family Compsemydidae. The type species is C. matheroni.

Chelonoidis gersoni[70]

Sp. nov

Valid

Viñola-López & Almonte

Late Quaternary

 Dominican Republic

A tortoise, a species of Chelonoidis.

Chelonoidis meridiana[71]

Sp. nov

In press

Vlachos, de la Fuente & Sterli

Miocene

 Argentina

A tortoise, a species of Chelonoidis.

Chelydropsis aubasi[72]

Sp. nov

Valid

Joyce, Landréat & Rollot

Eocene (Bartonian)

 France

A pan-chelydrid.

Chrysemys corniculata[73]

Sp. nov

Jasinski

Miocene-Pliocene (Hemphillian-Blancan)

 United States
( Tennessee)

A species of Chrysemys.

Dortoka vremiri[74]

Sp. nov

Valid

Augustin et al.

Late Cretaceous (Maastrichtian)

Sînpetru Formation

 Romania

A stem-pleurodiran belonging the family Dortokidae. Argued by Tong, Buffetaut & Claude (2022) to be more likely a species belonging to the dortokid genus Ronella.[75]

Edowa[76] Gen. et sp. nov Adrian et al. Late Cretaceous (Turonian) Moreno Hill Formation  United States
( New Mexico)
A member of the family Baenidae. The type species is E. zuniensis.

Forachelys[77]

Gen. et sp. nov

Valid

Bourque

Miocene (Arikareean)

Las Cascadas Formation

 Panama

A member of the family Geoemydidae belonging to the tribe Ptychogastrini. The type species is F. woodi.

Gestemys[78]

Gen. et sp. nov

Valid

De la Fuente et al.

Eocene

Geste Formation

 Argentina

A member of the family Podocnemididae. Genus includes new species G. powelli.

Hesperotestudo (Caudochelys) harrisi[79]

Sp. nov

Valid

Lichtig & Lucas

Late Barstovian

Tesuque Formation

 United States
( New Mexico)

A tortoise.

Hutchemys walkerorum[80]

Sp. nov

In press

Jasinski et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( North Dakota)

A member of Pan-Trionychidae belonging to the family Plastomenidae.

Jimemys[81]

Gen. et sp. nov

Valid

Edgar et al.

Late Cretaceous (Santonian-Campanian)

Milk River Formation

 Canada

A member of Pan-Trionychidae belonging to the family Plastomenidae. The type species is J. glaebosus.

Leiochelys[82]

Gen. et sp. nov

In press

Brinkman et al.

Late Cretaceous (Maastrichtian)

Frenchman Formation

 Canada
( Saskatchewan)

A pan-kinosternid. The type species is L. tokaryki.

Leviathanochelys[83]

Gen. et sp. nov

Valid

Castillo-Visa et al.

Late Cretaceous (Campanian)

Perles Formation

 Spain

A large marine turtle. The type species is L. aenigmatica.

Leviathanochelys holotype

Mokelemys[84]

Gen. et sp. nov

In press

Pérez-García

Pliocene

 Democratic Republic of the Congo

A member of the family Podocnemididae belonging to the tribe Erymnochelyini. Genus includes new species M. mbembe.

Prochelidella palomoi[85]

Sp. nov

Maniel, de la Fuente & Filippi

Late Cretaceous (Campanian)

Anacleto Formation

 Argentina

A member of the family Chelidae.

Solitudo[86]

Gen. et comb. et sp. nov

Valid

Valenti et al.

Pliocene and Pleistocene

 Italy
 Malta
 Spain

A tortoise. The type species is "Testudo" robusta Leith-Adams (1877); genus also includes "Testudo" gymnesica Bate (1914), as well as new species S. sicula.

aff. "Stylemys" gisellae[87]

Sp. nov

Carbot-Chanona et al.

Oligocene (Arikareean)

Chilapa Formation

 Mexico

A pan-tortoise.

Testudo lohanica[88]

Sp. nov

Valid

Pérez-García et al.

Late Miocene

 Romania

A tortoise, a species of Testudo.

Tongemys[89]

Gen. et sp. nov

Valid

Joyce et al.

Early Cretaceous (Berriasian)

Purbeck Group

 United Kingdom

A member of the family Compsemydidae. The type species is T. enigmatica.

Research[edit]

  • Review of the development and evolutionary history of the scute patterns of the carapace of extant and fossil turtles is published by Ascarrunz & Sánchez-Villagra (2022).[90]
  • A study on the evolution of labyrinth morphology in living and fossil turtles is published by Evers et al. (2022), who interpret their findings as indicating that turtles have large relative labyrinth sizes that evolved independently to large labyrinths in other major vertebrate groups, and that labyrinth shape variation of turtles cannot be explained by ecology or neck function.[91]
  • A study on the biogeography of non-marine turtles over the last 100 million years is published by Chiarenza et al. (2022), indicative of a latitudinal shift in the distribution toward the equator, likely due to declining temperature.[92]
  • A clutch of turtle eggs with unique attributes of the eggshell is described from the Upper Cretaceous Kaiparowits Formation (Utah, United States) by Ferguson & Tapanila (2022), who name a new oospecies Testudoolithus tuberi.[93]
  • Silva et al. (2022) describe burrows from the Maastrichtian Adamantina Formation (Brazil) which were probably produced by freshwater turtles, and argue that this findings supports the interpretation of the original function of turtle shells as an adaptation to fossorial behavior.[94]
  • Description of the fossil material of turtles and tortoises from the Pleistocene of Crete (Greece) is published by Vlachos (2022), who rejects the validity of Testudo marginata cretensis as a distinct subspecies of the marginated tortoise.[95]
  • Scheyer et al. (2022) describe the first specimen of Proganochelys quenstedtii from the Norian Klettgau Formation (Switzerland), providing new information on the cranial anatomy of this species.[96]
  • A study on the histology of the shell of Proterochersis porebensis is published by Szczygielski & Słowiak (2022).[97]
  • Revision of the helochelydrid shell remains from the Cretaceous (Albian to Cenomanian) English greensands is published by Joyce (2022), who considers the most likely type series of Trachydermochelys phlyctaenus to be a chimera, and designates a lectotype for this species.[98]
  • Tong, Buffetaut & Claude (2022) describe an isolated costal of Dortoka vasconica from the Late Cretaceous (late Campanian-early Maastrichtian) of the Massecaps locality, extending known geographic range of this species to southern France, and interpreted by the authors as supporting the presence of two distinct lineages of Dortokidae in Western and Eastern Europe during the Late Cretaceous-Paleogene.[75]
  • The first three-dimensional reconstructions of the skulls and main neuroanatomical structures (cranial, nasal and labyrinthic cavities, nervous and carotid canals) of two specimens belonging to the genus Galianemys are presented by Martín-Jiménez & Pérez-García (2022).[99]
  • Description of the anatomy of the skull of Lakotemys australodakotensis is published by Rollot et al. (2022).[100]
  • Description of the anatomy of the skull of Trinitichelys hiatti and a study on its affinities is published by Rollot et al. (2022).[101]
  • Fossil material of Boremys pulchra, otherwise known from the Campanian of Montana and Alberta, is reported from the Hell Creek Formation of Montana by Adrian (2022), extending the stratigraphic range of the taxon through at minimum the latest Maastrichtian.[102]
  • Fossils providing evidence of the presence of large-bodied trionychids in East Asian riverine or brackish waters during the Late Cretaceous are described from the Maastrichtian Isoai Formation (Japan) by Kato et al. (2022).[103]
  • Danilov et al. (2022) describe fossil material of Campanian pan-chelonioid turtles from the Beloe Ozero locality (Rybushka Formation; Saratov Oblast, Russia), including specimens of Protostega gigas with estimated size corresponding to those of the largest specimens from North America, representing the first record of this species outside North America reported to date.[104]
  • De La Garza et al. (2022) describe an exceptionally preserved pan-cheloniid sea turtle from the Eocene Fur Formation (Denmark), preserved with fossilized limb tissue revealing an originally soft, wrinkly skin devoid of scales, which coexisted with a bony carapace covered in scutes.[105]
  • A study on the anatomy of the cast of the holotype specimen of Chinemys pani from the Pleistocene of Taiwan is published by Liaw & Tsai (2022), who interpret the holotype as a specimen of the Chinese pond turtle.[106]
  • A study on the evolution of tortoise body size over the past 23 million years is published by Joos et al. (2022), who report evidence of limited variation of tortoise body size until the reduction of both mean body size and maximum body size in mainland tortoises in the Early Pleistocene and in island tortoises in the Late Pleistocene and Holocene.[107]

Archosauriformes[edit]

Archosaurs[edit]

Other archosauriforms[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Stenoscelida[108]

Gen. et sp. nov

Valid

Müller, Garcia & Fonseca

Late Triassic (late Carnian/early Norian)

 Brazil

A member of the family Proterochampsidae. Genus includes new species S. aurantiacus.

Vigilosaurus[109]

Gen. et sp. nov

Chen & Liu

Permian (Changhsingian)

Guodikeng Formation

 China

An archosauriform, possibly a member of Proterochampsia. Genus includes new species V. gaochangensis.

Research[edit]

  • Fossils of possible members of the genera Chasmatosuchus and Proterosuchus are described from the Sanga do Cabral Formation by de-Oliveira et al. (2022), representing the first unambiguous archosauriform records from the Lower Triassic of Brazil reported to date.[110]
  • Redescription and a study on the phylogenetic affinities of Sphodrosaurus pennsylvanicus is published by Ezcurra & Sues (2022), who reinterpret this taxon as a doswelliid.[111]
  • Redescription and a study on the phylogenetic affinities of Proterochampsa nodosa is published by De Simão-Oliveira et al. (2022).[112]
  • Fabbri & Bhullar (2022) describe the endocast of Euparkeria capensis, interpreting the brain morphology of Euparkeria as overall similar to those of phytosaurs, crocodilians and early dinosaurs.[113]

Other reptiles[edit]

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images

Belebey shumovi[114]

Sp. nov

In press

Bulanov et al.

Permian (Guadalupian)

Belebey Formation

 Russia
( Udmurtia)

A bolosaurid.

Champsosaurus norelli[115]

Sp. nov

Valid

Brownstein

Paleocene (Tiffanian)

Polecat Bench Formation

 United States
( Wyoming)

Cryptovaranoides[116]

Gen. et sp. nov

Unavailable

Whiteside, Chambi-Trowell & Benton

Late Triassic (Rhaetian)

 United Kingdom

A neodiapsid reptile of uncertain affinities. Originally described as an early member of the crown group of Squamata, possibly a member of Neoanguimorpha;[116] Brownstein et al. (2023) excluded it from the crown group of Squamata, and considered it more likely to have affinities with early archosauromorphs.[117] The type species is C. microlanius. The electronic publication lacks registration information.

Kosmodraco[115]

Gen. et comb. et sp. nov

Valid

Brownstein

Paleocene

 United States
( North Dakota
 Wyoming)

A member of Choristodera belonging to the family Simoedosauridae. The type species is "Simoedosaurus" dakotensis Erickson (1987); genus also includes new species K. magnicornis.

Maiothisavros[118]

Gen. et sp. nov

Valid

Mooney et al.

Permian (Artinskian)

 United States
( Oklahoma)

An early member of Neodiapsida. The type species is M. dianeae.

Navajosphenodon[119]

Gen. et sp. nov

Valid

Simões, Kinney-Broderick & Pierce

Early Jurassic (Sinemurian-Pliensbachian)

Kayenta Formation

 United States
( Arizona)

A rhynchocephalian belonging to the group Sphenodontinae. The type species is N. sani.

Opisthiamimus[120] Gen. et sp. nov In press DeMar, Jones, & Carrano Late Jurassic (Kimmeridgian-Tithonian) Morrison Formation  United States ( Wyoming) A basal rhynchocephalian. The type species is O. gregori.

Pomolispondylus[121]

Gen. et sp. nov

Valid

Cheng et al.

Early Triassic (Olenekian)

Jialingjiang Formation

 China

A relative of family Saurosphargidae, belonging to the new group Saurosphargiformes. The type species is P. biani.

Puercosuchus[122] Gen. et sp. nov In press Marsh et al. Late Triassic (Norian) Chinle Formation  United States ( Arizona) An allokotosaur belonging to the family Azendohsauridae. The type species is P. traverorum.

Quasicolognathus[123]

Gen. et sp. nov

Valid

Sues, Kligman & Schoch

Middle Triassic (Ladinian)

Erfurt Formation

 Germany

A reptile with similarities to Colognathus, belonging to the new family Colognathidae. The type species is Q. eothen.

Research[edit]

  • A study on the proportions of skull and limb bones in mesosaur specimens, aiming to determine whether there are statistically significant morphological differences through ontogenetic development among mesosaurs coming from Africa, Brazil and Uruguay, and evaluating the implications of the developmental pattern found in mesosaurs for the knowledge of the phylogeny and evolution of growth patterns of early amniotes, is published by Núñez Demarco, Ferigolo & Piñeiro (2022).[124]
  • A study on the ontogenetic changes in mesosaurs is published by Verrière & Fröbisch (2022), who interpret their findings as indicative of a progressive ecological shift during the growth of mesosaurs, and supporting the interpretation of Mesosaurus tenuidens as the only valid species within Mesosauridae, with specimens assigned to Stereosternum tumidum and Brazilosaurus sanpauloensis representing immature stages or incomplete specimens of Mesosaurus.[125]
  • A study on tooth implantation, replacement and attachment in Scoloparia glyphanodon is published by Jenkins & Bhullar (2022).[126]
  • Revision and a study on the phylogenetic affinities of bradysaurian pareiasaurs from the Guadalupian of the Karoo Basin (South Africa) is published by Van den Brandt et al. (2022).[127]
  • A study on the anatomy of the skull of Captorhinus aguti, indicative of the presence of distinct anatomical modules on each side of the skull, and evaluating the implications of this modularity pattern for the knowledge of the evolution and function of temporal openings in amniote skulls, is published by Werneburg & Abel (2022).[128]
  • Description of the suture morphology within the dermatocranium of Captorhinus aguti is published by Abel et al. (2022), who also reconstruct the jaw adductor musculature of this reptile, and attempt to determine whether the reconstructed cranial mechanics in C. aguti could be treated as a model for the ancestor of fenestrated amniotes.[129]
  • Bazzana et al. (2022) study the virtual cranial and otic endocasts of two captorhinid specimens, providing evidence of more complex and diverse neuroanatomy of early sauropsids than previously anticipated.[130]
  • New fossil material of Moradisaurus grandis (two partial skulls of juvenile individuals) is described from the Permian Moradi Formation (Niger) by Sidor et al. (2022).[131]
  • Redescription of the anatomy of the postcranial skeleton of Coelurosauravus elivensis is published by Buffa et al. (2022).[132]
  • Redescription and a study on the phylogenetic affinities of Palacrodon is published by Jenkins et al. (2022).[133]
  • A new specimen of Helveticosaurus zollingeri is described from the outcrops of the Middle Triassic Besano Formation in the province of Varese (Italy by Bindellini & Dal Sasso (2022), who provide an updated skeletal reconstruction of this species, and study its phylogenetic affinities, swimming mode and possible ecological niche.[134]
  • Redescription of the type specimens of Opisthias rarus is published by Herrera-Flores, Stubbs & Sour-Tovar (2022), who also describe a new specimen of Theretairus antiquus from the Upper Jurassic Morrison Formation (Como Bluff, Wyoming, United States), and interpret T. antiquus as a taxon distinct from O. rarus.[135]
  • Partial dentary of a rhynchocephalian is described from an intertrappean deposit from the Naskal locality within the Deccan Traps Volcanic Province (India) by Anantharaman et al. (2022), representing the first known record of a rhynchocephalian from the Cretaceous–Paleogene transition outside of Patagonia.[136]
  • Description of a near-complete skeleton of Bellairsia gracilis from the Bathonian Kilmaluag Formation (Scotland, United Kingdom) and a study on the affinities of this stem-squamate is published by Tałanda et al. (2022).[137]
  • Description of a nearly complete skeleton of Hanosaurus hupehensis from the Lower Triassic (Olenekian) Jialingjiang Formation (Hubei, China) is published by Wang et al. (2022), who find Hanosaurus to be an aquatic reptile with slender and elongate trunk and shortened limbs (a convergence in body plan with members of other groups of marine reptiles, such as Chaohusaurus, Nanchangosaurus and Pleurosaurus), and recover it as the basalmost member of the new clade Sauropterygiformes (which additionally includes Atopodentatus, Helveticosaurus, saurosphargids, placodontiforms and eosauropterygians).[138]
  • A large rib bearing an osteoderm is described from the Upper Triassic Kössen Formation (Switzerland) by Scheyer et al. (2022), who interpret this specimen as a member or a relative of the family Saurosphargidae with potential affinities to the genus Largocephalosaurus, potentially extending the occurrence of saurosphargids about 35 million years into the Late Triassic.[139]
  • Description of the neomorphic ossification between the parietal, quadrate and squamosal in the skulls of Coeruleodraco jurassicus and Philydrosaurus proseilus is published by Qin, Yi & Gao (2022).[140]
  • New specimen of Hyphalosaurus lingyuanensis with well preserved integumentary remains is described from the Lower Cretaceous Yixian Formation (China) by Wang et al. (2022).[141]
  • A study aiming to model the type of respiratory system able to meet the metabolic demands of Tanystropheus is published by de Souza & Klein (2022).[142]
  • Description of new specimens of Hyperodapedon from Brazil with apically serrated teeth crowns, representing new maxillary tooth morphotype and the first records of serrated teeth in rhynchosaurs, and a study aiming to determine whether the maxillary crown morphology of rhynchosaurs is taxonomically informative or reflects ontogeny, is published by Scartezini & Soares (2022).[143]
  • A study on the external morphology and microanatomy of premaxillae of Hyperodapedon is published by Mukherjee & Ray (2022), who report evidence of morphological correlates for innervation in the studied premaxillae, and argue that the Hyperodapedon premaxillae had heightened sensory capabilities.[144]
  • A study on the anatomy and phylogenetic affinities of Tricuspisaurus thomasi and Variodens inopinatus is published by Chambi-Trowell et al. (2022).[145]
  • A study on the morphology of the braincase of Trilophosaurus buettneri, and on its implications for the knowledge of the evolution of neurocranium in early pan-archosaurs, is published by Wilson et al. (2022).[146]
  • A study on the skeletal anatomy and phylogenetic affinities of Shringasaurus indicus is published by Sengupta & Bandyopadhyay (2022).[147]

Reptiles in general[edit]

  • A new time tree for the evolution of early amniotes and reptiles is presented by Simões et al. (2022), who interpret their findings as indicative of a close association between climate changes and reptile evolutionary dynamics across the Permian and Triassic.[148]
  • A study on the impact of the body size and shape on drag in ichthyosaurs and plesiosaurs, and on the impact of this relationship on the evolution of trunk length and neck proportions in Sauropterygia, is published by Gutarra et al. (2022).[149]
  • A study on the morphospace distribution, morphological diversity and evolutionary rates of lepidosaurs throughout their evolutionary history is published by Bolet et al. (2022).[150]
  • Tracks produced by squamates or rhynchocephalians are described from the Lower Cretaceous Botucatu Formation (Brazil) by Buck et al. (2022), representing the first known evidence of the presence of lepidosaurs in the ancient Botucatu desert.[151]
  • A study on the evolution of relative skull sizes in Paleozoic and Mesozoic archosauromorph reptiles is published by Bestwick et al. (2022), who interpret their findings as indicating that relative skull sizes of erythrosuchids and theropod dinosaurs are distinct from each other, and that the disproportionately large skulls of erythrosuchids were unique among all terrestrial archosauromorphs.[152]

References[edit]

  1. ^ Scarpetta, S. G.; Ledesma, D. T. (2022). "A strikingly ornamented fossil alligator lizard (Squamata: Abronia) from the Miocene of California". Zoological Journal of the Linnean Society. 197 (3): 752–767. doi:10.1093/zoolinnean/zlac024.
  2. ^ Dong, L.; Wang, Y.-Q.; Zhao, Q.; Vasilyan, D.; Wang, Y.; Evans, S. E. (2022). "A new stem-varanid lizard (Reptilia, Squamata) from the early Eocene of China". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): Article ID 20210041. doi:10.1098/rstb.2021.0041. PMC 8819366. PMID 35125002.
  3. ^ Smith, K. T.; Bhullar, B.-A. S.; Bloch, J. I. (2022). "New diminutive Eocene lizard reveals high K-Pg survivorship and taxonomic diversity of stem xenosaurs in North America". American Museum Novitates (3986): 1–36. doi:10.1206/3986.1. hdl:2246/7293. S2CID 246867628.
  4. ^ Čerňanský, A.; Daza, J. D.; Smith, R.; Bauer, A. M.; Smith, T.; Folie, A. (2022). "A new gecko from the earliest Eocene of Dormaal, Belgium: a thermophilic element of the 'greenhouse world'". Royal Society Open Science. 9 (6): Article ID 220429. Bibcode:2022RSOS....920429C. doi:10.1098/rsos.220429. PMC 9240692. PMID 35774137.
  5. ^ a b Brownstein, C. D.; Meyer, D. L.; Fabbri, F.; Bhullar, B.-A. S.; Gauthier, J. A. (2022). "Evolutionary origins of the prolonged extant squamate radiation". Nature Communications. 13 (1). 7087. Bibcode:2022NatCo..13.7087B. doi:10.1038/s41467-022-34217-5. PMC 9708687. PMID 36446761.
  6. ^ Villa, A.; Wings, O.; Rabi, M. (2022). "A new gecko (Squamata, Gekkota) from the Eocene of Geiseltal (Germany) implies long-term persistence of European Sphaerodactylidae". Papers in Palaeontology. 8 (3): e1434. doi:10.1002/spp2.1434. S2CID 249358350.
  7. ^ Deshmukh, U. B.; Mungole, A. J.; Scanferla, A.; Zaher, H. (2022). "Katariana nomen novum: a replacement name for the preoccupied extinct genus Kataria Scanferla, Zaher, Novas, de Muizon & Céspedes, 2013 (Serpentes: Alethinophidia)". Zootaxa. 5178 (6): 595. doi:10.11646/zootaxa.5178.6.7. PMID 36095707. S2CID 251998606.
  8. ^ Dong, Liping; Wang, Yuan; Evans, Susan E. (2022-09-14). "A new fossil lizard (Reptilia: Squamata) from the Lower Cretaceous of eastern Inner Mongolia, China". Cretaceous Research. 141: 105363. doi:10.1016/j.cretres.2022.105363. ISSN 0195-6671. S2CID 252286951.
  9. ^ Garberoglio, F. F.; Triviño, L. N.; Albino, A. (2022). "A new madtsoiid snake from the Paleogene of South America (northwestern Argentina), based on an articulated postcranial skeleton". Journal of Vertebrate Paleontology. 42 (2). e2128687. Bibcode:2022JVPal..42E8687G. doi:10.1080/02724634.2022.2128687. S2CID 253566068.
  10. ^ Georgalis, G. L.; Szyndlar, Z. (2022). "First occurrence of Psammophis (Serpentes) from Europe witnesses another Messinian herpetofaunal dispersal from Africa – biogeographic implications and a discussion of the vertebral morphology of psammophiid snakes". The Anatomical Record. 305 (11): 3263–3282. doi:10.1002/ar.24892. PMID 35139258. S2CID 246700548.
  11. ^ Čerňanský, A.; Stanley, E. L.; Daza, J. D.; Bolet, A.; Arias, J. S.; Bauer, A. M.; Vidal-García, M.; Bevitt, J. J.; Peretti, A. M.; Aung, N. N.; Evans, S. E. (2022). "A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument". Scientific Reports. 12 (1): Article number 1660. Bibcode:2022NatSR..12.1660C. doi:10.1038/s41598-022-05735-5. PMC 8803969. PMID 35102237.
  12. ^ Vasilyan, D.; Čerňanský, A.; Szyndlar, Z.; Mörs, T. (2022). "Amphibian and reptilian fauna from the early Miocene of Echzell, Germany". Fossil Record. 25 (1): 99–145. doi:10.3897/fr.25.83781.
  13. ^ Longrich, Nicholas R.; Jalil, Nour-Eddine; Khaldoune, Fatima; Yazami, Oussama Khadiri; Pereda-Suberbiola, Xabier; Bardet, Nathalie (2022-08-24). "Thalassotitan atrox, a giant predatory mosasaurid (Squamata) from the Upper Maastrichtian Phosphates of Morocco". Cretaceous Research. 140. 105315. Bibcode:2022CrRes.14005315L. doi:10.1016/j.cretres.2022.105315. ISSN 0195-6671. S2CID 251821884.
  14. ^ Woolley, C. H.; Thompson, J. R.; Wu, Y.-H.; Bottjer, D. J.; Smith, N. D. (2022). "A biased fossil record can preserve reliable phylogenetic signal". Paleobiology. 48 (3): 480–495. Bibcode:2022Pbio...48..480W. doi:10.1017/pab.2021.45. S2CID 246394779.
  15. ^ Yang, J.; Wu, W.; Yu, K.; Song, Q. (2022). "The first occurrence of Scincomorpha lizard from Nenjiang Formation (lower Campanian) of Jilin, Northeast China". Global Geology (English Edition). 25 (4): 255–263. doi:10.3969/j.issn.1673-9736.2022.04.03.
  16. ^ Vullo, R.; Bailon, S.; Dauphin, Y.; Monchot, H.; Allain, R. (2022). "A reappraisal of Jeddaherdan aleadonta (Squamata: Acrodonta), the purported oldest iguanian lizard from Africa" (PDF). Cretaceous Research. 143. 105412. doi:10.1016/j.cretres.2022.105412. S2CID 253349389.
  17. ^ Syromyatnikova, E.; Aranda, E. (2022). "A record of galliwasp (Diploglossidae: Diploglossus) from the Pleistocene of Cuba". Historical Biology: An International Journal of Paleobiology. 35 (7): 1069–1073. doi:10.1080/08912963.2022.2077108. S2CID 248939898.
  18. ^ Syromyatnikova, E.; Klembara, J.; Redkozubov, O. (2022). "The Pliocene Ophisaurus (Anguidae) from Eastern Europe: new records and additions to the history of the genus and its palaeoenvironment". Palaeobiodiversity and Palaeoenvironments. 103 (3): 575–584. doi:10.1007/s12549-022-00556-w. S2CID 254345140.
  19. ^ Augé, M. L.; Folie, A.; Smith, R.; Phélizon, A.; Gigase, P.; Smith, T. (2022). "Revision of the oldest varanid, Saniwa orsmaelensis Dollo, 1923, from the earliest Eocene of northwest Europe". Comptes Rendus Palevol. 21 (25): 511–529. doi:10.5852/cr-palevol2022v21a25. S2CID 251290074.
  20. ^ Villa, A.; Delfino, M. (2022). "First fossil of Varanus Merrem, 1820 (Squamata: Varanidae) from the Miocene Siwaliks of Pakistan". Geodiversitas. 44 (7): 229–235. doi:10.5252/geodiversitas2022v44a7. S2CID 247026294.
  21. ^ Cross, S. R. R.; Moon, B. C.; Stubbs, T. L.; Rayfield, E. J.; Benton, M. J. (2022). "Climate, competition, and the rise of mosasauroid ecomorphological disparity". Palaeontology. 65 (2): e12590. Bibcode:2022Palgy..6512590C. doi:10.1111/pala.12590. S2CID 248397240.
  22. ^ MacLaren, J. A.; Bennion, R. F.; Bardet, N.; Fischer, V. (2022). "Global ecomorphological restructuring of dominant marine reptiles prior to the Cretaceous–Palaeogene mass extinction". Proceedings of the Royal Society B: Biological Sciences. 289 (1975): Article ID 20220585. doi:10.1098/rspb.2022.0585. PMC 9130788. PMID 35611532.
  23. ^ Bennion, R. F.; MacLaren, J. A.; Coombs, E. J.; Marx, F. G.; Lambert, O.; Fischer, V. (2022). "Convergence and constraint in the cranial evolution of mosasaurid reptiles and early cetaceans". Paleobiology. 49 (2): 215–231. doi:10.1017/pab.2022.27. hdl:10067/1900440151162165141. S2CID 251756101.
  24. ^ Woolley, M. R.; Chinsamy, A.; Caldwell, M. W. (2022). "Unraveling the taxonomy of the South African mosasaurids". Frontiers in Earth Science. 10. 971968. Bibcode:2022FrEaS..10.1968W. doi:10.3389/feart.2022.971968.
  25. ^ Grigoriev, D. V.; Arkhangelsky, M. S.; Kolchanov, V. V.; Bulanov, V. V.; Sennikov, A. G.; Golubev, V. K.; Skutschas, P. P. (2022). "The use of zygapophyseal skeletochronology in individual age determination of a basal mosasauroid (Squamata, Mosasauridae) from the Campanian of Saratov Region". Paleontological Journal. 56 (4): 441–447. doi:10.1134/S0031030122040025. S2CID 251519110.
  26. ^ Rempert, Trevor; Vinkeles Melchers, Alexander P.M.; Rempert, Ashley N.; Haque, Muhammad R.; Armstrong, Andrew. "Occurrence of Mosasaurus hoffmannii Mantell, 1829 (Squamata, Mosasauridae) in the Maastrichtian Phosphates of Morocco". Journal of Paleontological Sciences.
  27. ^ Viñola-López, L. W.; Borges-Sellén, C. R.; Arano-Ruiz, A. F.; Quintero Vázquez, S.; Rabassa Puerto, R.; Ceballos-Izquierdo, Y. (2022). "The first record of mosasaurs (Squamata: Mosasauridae) from the West Indies and its paleobiogeographical implications". Journal of South American Earth Sciences. 119: Article 103972. Bibcode:2022JSAES.11903972V. doi:10.1016/j.jsames.2022.103972. S2CID 251684515.
  28. ^ Zaher, H.; Mohabey, D. M.; Grazziotin, F. G.; Wilson Mantilla, J. A. (2022). "The skull of Sanajeh indicus, a Cretaceous snake with an upper temporal bar, and the origin of ophidian wide-gaped feeding". Zoological Journal of the Linnean Society. 197 (3): 656–697. doi:10.1093/zoolinnean/zlac001.
  29. ^ Wazir, W. A.; Sehgal, R. K.; Čerňanský, A.; Patnaik, R.; Kumar, N.; Singh, A. P.; Uniyal, P.; Singh, N. P. (2022). "A find from the Ladakh Himalaya reveals a survival of madtsoiid snakes (Serpentes, Madtsoiidae) in India through the late Oligocene". Journal of Vertebrate Paleontology. 41 (6): e2058401. doi:10.1080/02724634.2021.2058401. S2CID 248636111.
  30. ^ Onary, S.; Hsiou, A. S.; Lee, M. S. Y.; Palci, A. (2022). "Redescription, taxonomy and phylogenetic relationships of Boavus Marsh, 1871 (Serpentes: Booidea) from the early–middle Eocene of the USA". Journal of Systematic Palaeontology. 19 (23): 1601–1622. doi:10.1080/14772019.2022.2068386. S2CID 249484060.
  31. ^ Chuliver, M.; Scanferla, A.; Smith, K. T. (2022). "Live birth in a 47-million-year-old snake". The Science of Nature. 109 (6). 56. Bibcode:2022SciNa.109...56C. doi:10.1007/s00114-022-01828-3. PMID 36333469. S2CID 253304736.
  32. ^ El-Hares, M. A.; Zaher, H.; El-Mekkawy, D.; El-Sayed, S.; Seiffert, E. R.; Sallam, H. M. (2022). "New records of legless squamates from the lowest upper Eocene deposits of the Fayum Depression, Egypt". Journal of Vertebrate Paleontology. 41 (4): e1992770. doi:10.1080/02724634.2021.1992770. S2CID 246926004.
  33. ^ Ren, J.; Jiang, H.; Xiang, K.; Sullivan, C.; He, Y.; Cheng, L.; Han, F. (2022). "A new basal ichthyosauromorph from the Lower Triassic (Olenekian) of Zhebao, Guangxi Autonomous Region, South China". PeerJ. 10: e13209. doi:10.7717/peerj.13209. PMC 8995025. PMID 35415016.
  34. ^ Maisch, Michael W. (2022-12-15). "Ein neuer Eurhinosaurus (Reptilia: Ichthyosauria) aus der Posidonienschiefer-Formation (Unteres Toarcium) von Südwest-Deutschland mit Bemerkungen zur Nomenklatur und Taxonomie der Gattung". Jahreshefte der Gesellschaft für Naturkunde in Württemberg (in German). 178 (2022): 117–148. doi:10.26251/jhgfn.178.2022.117-148. ISSN 0368-2307.
  35. ^ Maisch, Michael; Matzke, Andreas (2022). "Magnipterygius huenei n. gen. n. sp., a new small stenopterygiid (Reptilia: Ichthyosauria) from the Posidonienschiefer Formation of SW Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (2): 169–201. doi:10.1127/njgpa/2022/1042. S2CID 246797718.
  36. ^ a b Yakupova, J. B.; Akhmedenov, K. M. (2022). "Nannopterygius finds in the West Kazakhstan region of the Republic of Kazakhstan". Izvestiya of Saratov University. Earth Sciences. 22 (2): 132–139. doi:10.18500/1819-7663-2022-22-2-132-139. S2CID 249945900.
  37. ^ Qiao, Y.; Liu, J.; Wolniewicz, A. S.; Iijima, M.; Shen, Y.; Wintrich, T.; Li, Q.; Sander, P. M. (2022). "A globally distributed durophagous marine reptile clade supports the rapid recovery of pelagic ecosystems after the Permo-Triassic mass extinction". Communications Biology. 5 (1). 1242. doi:10.1038/s42003-022-04162-6. PMC 9663502. PMID 36376479.
  38. ^ Nakajima, Y.; Shigeta, Y.; Houssaye, A.; Zakharov, Y. D.; Popov, A. M.; Sander, P. M. (2022). "Early Triassic ichthyopterygian fossils from the Russian Far East". Scientific Reports. 12 (1): Article number 5546. Bibcode:2022NatSR..12.5546N. doi:10.1038/s41598-022-09481-6. PMC 8976075. PMID 35365703.
  39. ^ Sander, P. M.; Romero Pérez de Villar, P.; Furrer, H.; Wintrich, T. (2022). "Giant Late Triassic ichthyosaurs from the Kössen Formation of the Swiss Alps and their paleobiological implications". Journal of Vertebrate Paleontology. 41 (6): e2046017. doi:10.1080/02724634.2021.2046017. S2CID 248444094.
  40. ^ Holm, T. B.; Delsett, L. L.; Alsen, P. (2022). "Vertebral size ratios and the ichthyosaurian vertebral column – a case study based on Late Jurassic fossils from North-East Greenland". Bulletin of the Geological Society of Denmark. 70: 1–17. doi:10.37570/bgsd-2022-70-01. S2CID 246570259.
  41. ^ Lukeneder, A.; Zverkov, N.; Kaurin, C.; Blüml, V. (2022). "First Early Cretaceous ichthyosaurs of Austria and the problem of Jurassic–Cretaceous ichthyosaurian faunal turnover". Cretaceous Research. 136: Article 105224. Bibcode:2022CrRes.13605224L. doi:10.1016/j.cretres.2022.105224. S2CID 248250701.
  42. ^ Roberts, A. J.; Engelschiøn, V. S.; Hurum, J. H. (2022). "First three-dimensional skull of the Middle Triassic mixosaurid ichthyosaur Phalarodon fraasi from Svalbard, Norway". Acta Palaeontologica Polonica. 67 (1): 51–62. doi:10.4202/app.00915.2021. hdl:10852/101253. S2CID 247862476.
  43. ^ Kelley, N. P.; Irmis, R. B.; dePolo, P. E.; Noble, P. J.; Montague-Judd, D.; Little, H.; Blundell, J.; Rasmussen, C.; Percival, L. M. E.; Mather, T. A.; Pyenson, N. D. (2022). "Grouping behavior in a Triassic marine apex predator". Current Biology. 32 (24): 5398–5405.e3. doi:10.1016/j.cub.2022.11.005. PMID 36538877. S2CID 254874088.
  44. ^ Jamison-Todd, S.; Moon, B. C.; Rowe, A. J.; Williams, M.; Benton, M. J. (2022). "Dietary niche partitioning in Early Jurassic ichthyosaurs from Strawberry Bank". Journal of Anatomy. 241 (6): 1409–1423. doi:10.1111/joa.13744. PMC 9644957. PMID 36175086.
  45. ^ Laboury, A.; Bennion, R. F.; Thuy, B.; Weis, R.; Fischer, V. (2022). "Anatomy and phylogenetic relationships of Temnodontosaurus zetlandicus (Reptilia: Ichthyosauria)". Zoological Journal of the Linnean Society. 195 (1): 172–194. doi:10.1093/zoolinnean/zlab118.
  46. ^ Lomax, D. R.; Massare, J. A. (2022). "Rediscovery of two casts of the historically important 'Proteo-saurus', the first complete ichthyosaur skeleton". Royal Society Open Science. 9 (11). 220966. Bibcode:2022RSOS....920966L. doi:10.1098/rsos.220966. PMC 9626254. PMID 36405641.
  47. ^ Lomax, D. R.; Sachs, S.; Hall, A. (2022). "The ultimate 'iffyosaur' – an unusual ichthyosaur composite containing British and German material of different geological stages". Paludicola. 14 (1): 32–42.
  48. ^ Miedema, F.; Maxwell, E. E. (2022). "Ontogenetic variation in the skull of Stenopterygius quadriscissus with an emphasis on prenatal development". Scientific Reports. 12 (1): Article number 1707. Bibcode:2022NatSR..12.1707M. doi:10.1038/s41598-022-05540-0. PMC 8807662. PMID 35105895.
  49. ^ Delsett, L. L.; Friis, H.; Kölbl-Ebert, M.; Hurum, J. H. (2022). "The soft tissue and skeletal anatomy of two Late Jurassic ichthyosaur specimens from the Solnhofen archipelago". PeerJ. 10: e13173. doi:10.7717/peerj.13173. PMC 8995021. PMID 35415019.
  50. ^ Massare, J. A.; Connely, M. V. (2022). "Braincase morphology of Baptanodon natans (Reptilia: Ichthyosauria)". Paludicola. 14 (1): 43–56.
  51. ^ Zverkov, N. G. (2022). "A problem of naming of the families of Late Jurassic and Cretaceous ichthyosaurs". Paleontological Journal. 56 (4): 463–470. doi:10.1134/S0031030122040141. S2CID 251519304.
  52. ^ Ketchum, Hilary; Benson, Roger (2022). "A new pliosaurid from the Oxford Clay Formation of Oxfordshire, UK". Acta Palaeontologica Polonica. 67 (2): 297–315. doi:10.4202/app.00887.2021. ISSN 0567-7920. S2CID 249034986.
  53. ^ Xu, G.-H.; Ren, Y.; Zhao, L.-J.; Liao, J.-L.; Feng, D.-H. (2022). "A long-tailed marine reptile from China provides new insights into the Middle Triassic pachypleurosaur radiation". Scientific Reports. 12 (1): Article number 7396. Bibcode:2022NatSR..12.7396X. doi:10.1038/s41598-022-11309-2. PMC 9072359. PMID 35513463.
  54. ^ Shang, Q.-H.; Li, C.; Wang, W. (2022). "Nothosaurus luopingensis n. sp. (Sauropterygia) from the Anisian, Middle Triassic of Luoping, Yunnan Province, China". Vertebrata PalAsiatica. 60 (4): 249–270. doi:10.19615/j.cnki.2096-9899.220524.
  55. ^ Schumacher, Bruce A.; Everhart, Michael J. (2022). "Washed Ashore – New Elasmosaurid Specimens (Plesiosauria: Sauropterygia) from the Late Cretaceous of Colorado and Kansas and Their Bearing on Elasmosaurid Lineages of the Western Interior Seaway". Transactions of the Kansas Academy of Science. 125 (3–4): 237–263. doi:10.1660/062.125.0313. ISSN 0022-8443. S2CID 253364262.
  56. ^ Klein, N.; Furrer, H.; Ehrbar, I.; Torres Ladeira, M.; Richter, H.; Scheyer, T. M. (2022). "A new pachypleurosaur from the Early Ladinian Prosanto Formation in the Eastern Alps of Switzerland". Swiss Journal of Palaeontology. 141 (1): Article 12. doi:10.1186/s13358-022-00254-2. PMC 9276568. PMID 35844249.
  57. ^ Persons, W. S.; Street, H. P.; Kelley, A. (2022). "A long-snouted and long-necked polycotylid plesiosaur from the Late Cretaceous of North America". iScience. 25 (10). 105033. Bibcode:2022iSci...25j5033P. doi:10.1016/j.isci.2022.105033. PMC 9617461. PMID 36317161.
  58. ^ Klein, N.; Wintrich, T.; Hagdorn, H.; Spiller, D.; Winkelhorst, H.; Goris, G.; Scheyer, T. M. (2022). "Placodus (Placodontia, Sauropterygia) dentaries from Winterswijk, The Netherlands (middle Anisian) and Hünfeld, Hesse, Germany (late Anisian) with comments on ontogenetic changes". PalZ. 96 (2): 289–302. doi:10.1007/s12542-022-00614-w. PMC 9132834. PMID 35645412.
  59. ^ Klein, N.; Eggmaier, S.; Hagdorn, H. (2022). "The redescription of the holotype of Nothosaurus mirabilis (Diapsida, Eosauropterygia)—a historical skeleton from the Muschelkalk (Middle Triassic, Anisian) near Bayreuth (southern Germany)". PeerJ. 10: e13818. doi:10.7717/peerj.13818. PMC 9422981. PMID 36046504.
  60. ^ Madzia, D.; Sachs, S.; Klug, C. (2022). "Historical significance and taxonomic status of Ischyrodon meriani (Pliosauridae) from the Middle Jurassic of Switzerland". PeerJ. 10: e13244. doi:10.7717/peerj.13244. PMC 8995022. PMID 35415018.
  61. ^ Krahl, A.; Lipphaus, A.; Sander, P. M.; Witzel, U. (2022). "Determination of muscle strength and function in plesiosaur limbs: finite element structural analyses of Cryptoclidus eurymerus humerus and femur". PeerJ. 10: e13342. doi:10.7717/peerj.13342. PMC 9169670. PMID 35677394.
  62. ^ Krahl, A.; Werneburg, I. (2022). "Deep-time invention and hydrodynamic convergences through amniote flipper evolution". The Anatomical Record. 306 (6): 1323–1355. doi:10.1002/ar.25119. PMID 36458511. S2CID 254151076.
  63. ^ Brum, A. S.; Simões, T. R.; Souza, G. A.; Pinheiro, A. E. P.; Figueiredo, R. G.; Caldwell, M. W.; Sayão, J. M.; Kellner, A. W. A. (2022). "Ontogeny and evolution of the elasmosaurid neck highlight greater diversity of Antarctic plesiosaurians". Palaeontology. 65 (2): e12593. Bibcode:2022Palgy..6512593B. doi:10.1111/pala.12593. S2CID 248144235.
  64. ^ Bunker, G.; Martill, D. M.; Smith, R.; Zourhi, S.; Longrich, N. (2022). "Plesiosaurs from the fluvial Kem Kem Group (mid-Cretaceous) of eastern Morocco and a review of non-marine plesiosaurs". Cretaceous Research. 140: Article 105310. Bibcode:2022CrRes.14005310B. doi:10.1016/j.cretres.2022.105310. S2CID 250964381.
  65. ^ O'Gorman, J. P. (2022). "Polycotylidae (Sauropterygia, Plesiosauria) from the La Colonia Formation, Patagonia, Argentina: phylogenetic affinities of Sulcusuchus erraini and the Late Cretaceous circum-pacific polycotylid diversity". Cretaceous Research. 140. 105339. Bibcode:2022CrRes.14005339O. doi:10.1016/j.cretres.2022.105339. S2CID 251749728.
  66. ^ Wiemann, J.; Menéndez, I.; Crawford, J. M.; Fabbri, M.; Gauthier, J. A.; Hull, P. M.; Norell, M. A.; Briggs, D. E. G. (2022). "Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur". Nature. 606 (7914): 522–526. Bibcode:2022Natur.606..522W. doi:10.1038/s41586-022-04770-6. PMID 35614213. S2CID 249064466.
  67. ^ Obraztsova, E. M.; Krasnolutskii, S. A.; Sukhanov, V. B.; Danilov, I. G. (2022). "Xinjiangchelyid turtles from the Middle Jurassic of the Berezovsk coal mine (Krasnoyarsk Territory, Russia): systematics, skeletal morphology, variation, relationships and palaeobiogeographic implications". Journal of Systematic Palaeontology. 20 (1). 2093662. doi:10.1080/14772019.2022.2093662. S2CID 252140996.
  68. ^ Gentry, A. D.; Kiernan, C. R.; Parham, J. F. (2022). "A large non-marine turtle from the Upper Cretaceous of Alabama and a review of North American "Macrobaenids"". The Anatomical Record. 306 (6): 1411–1430. doi:10.1002/ar.25054. PMID 37158131. S2CID 251698645.
  69. ^ Tong, H.; Tortosa, T.; Buffetaut, E.; Dutour, Y.; Turini, E.; Claude, J. (2022). "A compsemydid turtle from the Upper Cretaceous of Var, southern France". Annales de Paléontologie. 108 (1): Article 102536. Bibcode:2022AnPal.10802536T. doi:10.1016/j.annpal.2022.102536. S2CID 248792130.
  70. ^ Viñola-López, L. W.; Almonte, J. N. (2022). "Revision of the fossil land tortoises (Testudines: Testudinidae) from Hispaniola with the description of a new species". Novitates Caribaea. 20 (20): 11–29. doi:10.33800/nc.vi20.302. S2CID 250998766.
  71. ^ Vlachos, E.; de la Fuente, M. S.; Sterli, J. (2022). "A new large-sized species of Chelonoidis (Testudinidae) without gibbosities from the middle Miocene of Aguada Escondida (NW Chubut, Patagonia, Argentina)". The Anatomical Record. 306 (6): 1548–1557. doi:10.1002/ar.25070. PMID 36114630. S2CID 252334217.
  72. ^ Joyce, W. G.; Landréat, J.-L.; Rollot, Y. (2022). "A pan-chelydrid, Chelydropsis aubasi sp. nov., from the Middle Eocene (MP 15, early Bartonian) of Chéry-Chartreuve, France". The Anatomical Record. 306 (6): 1465–1480. doi:10.1002/ar.25001. PMID 35665466. S2CID 249432540.
  73. ^ Jasinski, S. E. (2022). "A new species of Chrysemys (Emydidae: Deirochelyinae) from the latest Miocene-Early Pliocene of Tennessee, USA and its implications for the evolution of painted turtles". Zoological Journal of the Linnean Society. 198: 149–183. doi:10.1093/zoolinnean/zlac084.
  74. ^ Augustin, F. J.; Csiki-Sava, Z.; Matzke, A. T.; Botfalvai, G.; Rabi, M. (2022). "A new latest Cretaceous pleurodiran turtle (Testudinata: Dortokidae) from the Haţeg Basin (Romania) documents end-Cretaceous faunal provinciality and selective survival during the K-Pg extinction". Journal of Systematic Palaeontology. 19 (15): 1059–1081. doi:10.1080/14772019.2021.2009583. S2CID 246652982.
  75. ^ a b Tong, H.; Buffetaut, E.; Claude, J. (2022). "Dortokid turtle remains from the Upper Cretaceous of Cruzy (Hérault, southern France) and phylogenetic implications". Palæovertebrata. 45 (2): e3. doi:10.18563/pv.45.2.e3. S2CID 253545761.
  76. ^ Adrian, Brent; Smith, Heather F.; Kelley, Kara; Wolfe, Douglas G. (2022-11-23). "A new baenid, Edowa zuniensis gen. et sp. nov., and other fossil turtles from the Upper Cretaceous Moreno Hill Formation (Turonian), New Mexico, USA". Cretaceous Research. 144: 105422. doi:10.1016/j.cretres.2022.105422. ISSN 0195-6671. S2CID 253905727.
  77. ^ Bourque, J. R. (2022). "A ptychogastrine (Testudines, Geoemydidae) from the early Miocene of Panama and a review of Miocene testudinoids from Central America" (PDF). Bulletin of the Florida Museum of Natural History. 59 (2): 16–44. doi:10.58782/flmnh.qvhz1455. S2CID 256931048.
  78. ^ de la Fuente, M. S.; Maniel, I. J.; González Ruiz, P.; Ledesma, J.; Deraco, M. V.; del Papa, C.; Herrera, C. (2022). "A new podocnemidid (Pleurodira: Pelomedusoides) from the Eocene of north-western Argentina, with comments on its evolutionary relationships and palaeoenvironmental settings". Journal of Systematic Palaeontology. 20 (1): Article 2081939. doi:10.1080/14772019.2022.2081939. S2CID 251083091.
  79. ^ Lichtig, A. J.; Lucas, S. G. (2022). "New giant tortoise skulls from the Miocene of the Española basin, New Mexico USA". New Mexico Museum of Natural History and Science Bulletin. 88: 25–31.
  80. ^ Jasinski, S. E.; Heckert, A. B.; Sailar, C.; Lichtig, A. J.; Lucas, S. G.; Dodson, P. (2022). "A softshell turtle (Testudines: Trionychidae: Plastomeninae) from the uppermost Cretaceous (Maastrichtian) Hell Creek formation, North Dakota, USA, with implications for the evolutionary relationships of plastomenines and other trionychids". Cretaceous Research. 135: Article 105172. Bibcode:2022CrRes.13505172J. doi:10.1016/j.cretres.2022.105172. S2CID 246803273.
  81. ^ Edgar, Shauna C.; Brinkman, Don B.; Ryan, Michael J.; Evans, David C. (2022-03-11). "A new plastomenid trionychid (Testudines: Pan-Trionychidae) from Milk River Formation of southern Alberta (Cretaceous: Santonian)". Canadian Journal of Earth Sciences. 59 (4): 205–215. Bibcode:2022CaJES..59..205E. doi:10.1139/cjes-2021-0040. S2CID 247431617.
  82. ^ Brinkman, D. B.; Libke, C.; McKellar, R. C.; Gasilov, S.; Somers, C. M. (2022). "A new pan-kinosternid, Leiochelys tokaryki, gen. et sp. nov., from the late Maastrichtian Frenchman formation, Saskatchewan Canada". The Anatomical Record. 306 (6): 1481–1500. doi:10.1002/ar.24952. PMID 35657025. S2CID 249312986.
  83. ^ Castillo-Visa, O.; Luján, À. H.; Galobart, À.; Sellés, A. (2022). "A gigantic bizarre marine turtle (Testudines: Chelonioidea) from the Middle Campanian (Late Cretaceous) of South-western Europe". Scientific Reports. 12 (1). 18322. Bibcode:2022NatSR..1218322C. doi:10.1038/s41598-022-22619-w. PMC 9671902. PMID 36396968.
  84. ^ Pérez-García, A. (2022). "A lower Pliocene Erymnochelyini turtle (Pleurodira, Podocnemididae) from the Democratic Republic of Congo". The Anatomical Record. 306 (6): 1396–1410. doi:10.1002/ar.25073. PMID 36151595. S2CID 252496519.
  85. ^ Maniel, I. J.; de la Fuente, M. S.; Filippi, L. F. (2022). "A new chelid turtle, Prochelidella palomoi sp. nov., from Campanian Anacleto Formation, Neuquén Basin, North-Western Patagonia, Argentina". The Anatomical Record. 306 (6): 1365–1376. doi:10.1002/ar.25074. PMID 36169187. S2CID 252566916.
  86. ^ Valenti, P.; Vlachos, E.; Kehlmaier, C.; Fritz, U.; Georgalis, G. L.; Luján, À. H.; Miccichè, R.; Sineo, L.; Delfino, M. (2022). "The last of the large-sized tortoises of the Mediterranean islands". Zoological Journal of the Linnean Society. 196 (4): 1704–1717. doi:10.1093/zoolinnean/zlac044.
  87. ^ Carbot-Chanona, G.; Jiménez-Hidalgo, E.; Díaz-Cruz, J. A.; Rivera-Velázquez, G.; Reynoso, V. H. (2022). "A new large tortoise from the early Oligocene (Arikareean NALMA) of Oaxaca, southern Mexico and its phylogenetic position within Pan-Testudinidae". Historical Biology: An International Journal of Paleobiology. 35 (9): 1748–1761. doi:10.1080/08912963.2022.2114352. S2CID 252032686.
  88. ^ Pérez-García, A.; Martín-Jiménez, M.; Vlachos, E.; Codrea, V. (2022). "The most complete extinct species of Testudo (Testudines, Testudinidae) defined by several well-preserved skeletons from the late Miocene of Romania". Journal of Systematic Palaeontology. 19 (18): 1237–1270. doi:10.1080/14772019.2022.2028025. S2CID 247721002.
  89. ^ Joyce, W. G.; Bourque, J. R.; Fernandez, V.; Rollot, Y. (2022). "An alternative interpretation of small-bodied turtles from the "Middle Purbeck" of England as a new species of compsemydid turtle". Fossil Record. 25 (2): 263–274. doi:10.3897/fr.25.85334. S2CID 251659402.
  90. ^ Ascarrunz, E.; Sánchez-Villagra, M. R. (2022). "The macroevolutionary and developmental evolution of the turtle carapacial scutes". Vertebrate Zoology. 72: 29–46. doi:10.3897/vz.72.e76256.
  91. ^ Evers, S. W.; Joyce, W. G.; Choiniere, J. N.; Ferreira, G. S.; Foth, C.; Hermanson, G.; Yi, H.; Johnson, C. M.; Werneburg, I.; Benson, R. B. J. (2022). "Independent origin of large labyrinth size in turtles". Nature Communications. 13 (1). 5807. Bibcode:2022NatCo..13.5807E. doi:10.1038/s41467-022-33091-5. PMC 9553989. PMID 36220806.
  92. ^ Chiarenza, A. A.; Waterson, A. M.; Schmidt, D. N.; Valdes, P. J.; Yesson, C.; Holroyd, P. A.; Collinson, M. E.; Farnsworth, A.; Nicholson, D. B.; Varela, S.; Barrett, P. M. (2022). "100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world". Current Biology. 33 (1): 109–121.e3. doi:10.1016/j.cub.2022.11.056. hdl:11093/5008. PMID 36549298. S2CID 254961077.
  93. ^ Ferguson, A. L.; Tapanila, L. (2022). "Rare clutch of Cretaceous turtle eggs preserved in the Kaiparowits Formation of southern Utah". Cretaceous Research. 135: Article 105197. Bibcode:2022CrRes.13505197F. doi:10.1016/j.cretres.2022.105197. S2CID 247468948.
  94. ^ Silva, G. T. G.; Nascimento, D. L.; Batezelli, A.; Ladeira, F. S. B.; Silva, M. L. (2022). "Cretaceous (Maastrichtian) chelonian burrows preserved in floodplain deposits in the Bauru Basin of Brazil: Evidence for the fossorial origin of turtle shells". Palaeogeography, Palaeoclimatology, Palaeoecology. 596: Article 110994. Bibcode:2022PPP...59610994S. doi:10.1016/j.palaeo.2022.110994. S2CID 248162195.
  95. ^ Vlachos, E. (2022). "The fossil record of turtles from the Pleistocene of Crete (Greece)". Comptes Rendus Palevol. 21 (35): 771–799. doi:10.5852/cr-palevol2022v21a35. S2CID 252892342.
  96. ^ Scheyer, T. M.; Klein, N.; Evers, S. W.; Mautner, A.-K.; Pabst, B. (2022). "First evidence of Proganochelys quenstedtii (Testudinata) from the Plateosaurus bonebeds (Norian, Late Triassic) of Frick, Canton Aargau, Switzerland". Swiss Journal of Palaeontology. 141 (1). 17. doi:10.1186/s13358-022-00260-4. PMC 9613585. PMID 36317153.
  97. ^ Szczygielski, T.; Słowiak, J. (2022). "Shell histology of the Triassic turtle, Proterochersis porebensis Szczygielski & Sulej, 2016, provides novel insights about shell ankylosis". Comptes Rendus Palevol. 21 (29): 619–679. doi:10.5852/cr-palevol2022v21a29. S2CID 251943656.
  98. ^ Joyce, W. G. (2022). "A review of helochelydrid shell material from late Albian to early Cenomanian greensands of Southern England, United Kingdom". The Anatomical Record. doi:10.1002/ar.25086. PMID 36193668. S2CID 252693787.
  99. ^ Martín-Jiménez, M.; Pérez-García, A. (2022). "The neuroanatomy of the bothremydid pleurodiran turtle Galianemys, from the Late Cretaceous (Cenomanian) of Morocco". The Anatomical Record. 306 (6): 1377–1395. doi:10.1002/ar.25072. PMID 36181385. S2CID 252646474.
  100. ^ Rollot, Y.; Evers, S. W.; Cifelli, R. L.; Joyce, W. G. (2022). "New insights into the cranial osteology of the Early Cretaceous paracryptodiran turtle Lakotemys australodakotensis". PeerJ. 10: e13230. doi:10.7717/peerj.13230. PMC 9013237. PMID 35437477.
  101. ^ Rollot, Y.; Evers, S. W.; Pierce, S. E.; Joyce, W. G. (2022). "Cranial osteology, taxonomic reassessment, and phylogenetic relationships of the Early Cretaceous (Aptian-Albian) turtle Trinitichelys hiatti (Paracryptodira)". PeerJ. 10: e14138. doi:10.7717/peerj.14138. PMC 9636874. PMID 36345484.
  102. ^ Adrian, B. (2022). "Stratigraphic range extension of the turtle Boremys pulchra (Testudinata, Baenidae) through at least the uppermost Cretaceous". Fossil Record. 25 (2): 275–285. doi:10.3897/fr.25.85563. S2CID 251828234.
  103. ^ Kato, T.; Masukawa, G.; Niiyama, S.; Nakajima, Y.; Sonoda, T.; Ando, H. (2022). "Redescription of Trionychid Costals from the Upper Cretaceous Nakaminato Group: Comparison with the Giant Trionychids from North America and Central Asia". Bulletin of Ibaraki Nature Museum. 25: 1–11.
  104. ^ Danilov, I. G.; Obraztsova, E. M.; Arkhangelsky, M. S.; Ivanov, A. V.; Averianov, A. O. (2022). "Protostega gigas and other sea turtles from the Campanian of Eastern Europe, Russia". Cretaceous Research. 135: Article 105196. Bibcode:2022CrRes.13505196D. doi:10.1016/j.cretres.2022.105196. S2CID 247431641.
  105. ^ De La Garza, R. G.; Madsen, H.; Sjövall, P.; Osbӕck, F.; Zheng, W.; Jarenmark, M.; Schweitzer, M. H.; Engdahl, A.; Uvdal, P.; Eriksson, M. E.; Lindgren, J. (2022). "An ancestral hard-shelled sea turtle with a mosaic of soft skin and scutes". Scientific Reports. 12 (1). 22655. Bibcode:2022NatSR..1222655D. doi:10.1038/s41598-022-26941-1. PMC 9805447. PMID 36587051.
  106. ^ Liaw, Y.-L.; Tsai, C.-H. (2022). "Taxonomic revision of Chinemys pani (Testudines: Geoemydidae) from the Pleistocene of Taiwan and its implications of conservation paleobiology". The Anatomical Record. 306 (6): 1501–1507. doi:10.1002/ar.25082. PMID 36181371. S2CID 252646660.
  107. ^ Joos, J.; Pimiento, C.; Miles, D. B.; Müller, J. (2022). "Quaternary megafauna extinctions altered body size distribution in tortoises". Proceedings of the Royal Society B: Biological Sciences. 289 (1987). 20221947. doi:10.1098/rspb.2022.1947. PMC 9667361. PMID 36382514.
  108. ^ Müller, R. T.; Garcia, M. S.; Fonseca, A. O. (2022). "A new proterochampsid (Archosauriformes: Proterochampsia) from the Late Triassic of southern Brazil and the emergence of archosaurian hind limb trait". Journal of Systematic Palaeontology. 20 (1). 2128913. doi:10.1080/14772019.2022.2128913. S2CID 253315459.
  109. ^ Chen, J.; Liu, J. (2022). "A late Permian archosauriform from Xinjiang shows evidence of parasagittal posture". The Science of Nature. 110 (1). 1. doi:10.1007/s00114-022-01823-8. PMID 36469133. S2CID 254222325.
  110. ^ de-Oliveira, T. M.; Kerber, L.; De França, M. A. G.; Pinheiro, F. L. (2022). "Archosauriform remains from the Lower Triassic Sanga do Cabral Formation of Brazil". Journal of Vertebrate Paleontology. 41 (6): e2068022. doi:10.1080/02724634.2022.2068022. S2CID 250196387.
  111. ^ Ezcurra, M.; Sues, H.-D (2022). "A re-assessment of the osteology and phylogenetic relationships of the enigmatic, large-headed reptile Sphodrosaurus pennsylvanicus (Late Triassic, Pennsylvania, USA) indicates archosauriform affinities". Journal of Systematic Palaeontology. 19 (24): 1643–1677. doi:10.1080/14772019.2022.2057820. S2CID 248785154.
  112. ^ De Simão-Oliveira, D.; Pinheiro, F. L.; De Andrade, M. B.; Pretto, F. A. (2022). "Redescription, taxonomic revaluation and phylogenetic affinities of Proterochampsa nodosa (Archosauriformes: Proterochampsidae) from the early Late Triassic of the Candelaria Sequence (Santa Maria Supersequence)". Zoological Journal of the Linnean Society. 196 (4): 1310–1332. doi:10.1093/zoolinnean/zlac048.
  113. ^ Fabbri, M.; Bhullar, B.-A. S. (2022). "The endocast of Euparkeria sheds light on the ancestral archosaur nervous system". Palaeontology. 65 (6): e12630. Bibcode:2022Palgy..6512630F. doi:10.1111/pala.12630. S2CID 253620250.
  114. ^ Bulanov, V. V.; Kovalenko, E. S.; MacDougall, M. J.; Golubev, V. K.; Fröbisch, J.; Podurets, K. M.; Bakaev, A. S. (2023). "Tooth replacement and reparative dentine formation in the middle Permian bolosaurids of European Russia". Historical Biology: An International Journal of Paleobiology. 35 (5): 748–761. doi:10.1080/08912963.2022.2067752. S2CID 248645211.
  115. ^ a b Brownstein, C. D. (2022). "High morphological disparity in a bizarre Paleocene fauna of predatory freshwater reptiles". BMC Ecology and Evolution. 22 (1): Article number 34. doi:10.1186/s12862-022-01985-z. PMC 8935759. PMID 35313822.
  116. ^ a b Whiteside, D. I.; Chambi-Trowell, S. A. V.; Benton, M. J. (2022). "A Triassic crown squamate". Science Advances. 8 (48): eabq8274. Bibcode:2022SciA....8.8274W. doi:10.1126/sciadv.abq8274. hdl:1983/a3c7a019-cfe6-4eb3-9ac0-d50c61c5319e. PMID 36459546.
  117. ^ Browstein, C. D.; Simões, T. R.; Caldwell, M. W.; Lee, M. S. Y.; Meyer, D. L.; Scarpetta, S. G. (2023). "The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates". Royal Society Open Science. 10 (10). 230968. doi:10.1098/rsos.230968. PMC 10565374. PMID 37830017.
  118. ^ Mooney, E. D.; Maho, T.; Bevitt, J. J.; Reisz, R. R. (2022). "An intriguing new diapsid reptile with evidence of mandibulo-dental pathology from the early Permian of Oklahoma revealed by neutron tomography". PLOS ONE. 17 (11). e0276772. Bibcode:2022PLoSO..1776772M. doi:10.1371/journal.pone.0276772. PMC 9710763. PMID 36449456.
  119. ^ Simões, T. R.; Kinney-Broderick, G.; Pierce, S. E. (2022). "An exceptionally preserved Sphenodon-like sphenodontian reveals deep time conservation of the tuatara skeleton and ontogeny". Communications Biology. 5 (1): Article number 195. doi:10.1038/s42003-022-03144-y. PMC 8894340. PMID 35241764.
  120. ^ DeMar, David G.; Jones, Marc E. H.; Carrano, Matthew T. (2022-12-31). "A nearly complete skeleton of a new eusphenodontian from the Upper Jurassic Morrison Formation, Wyoming, USA, provides insight into the evolution and diversity of Rhynchocephalia (Reptilia: Lepidosauria)". Journal of Systematic Palaeontology. 20 (1): 2093139. doi:10.1080/14772019.2022.2093139. hdl:2440/136608. ISSN 1477-2019. S2CID 252325953.
  121. ^ Cheng, L.; Moon, B. C.; Yan, C.; Motani, R.; Jiang, D.; An, Z.; Fang, Z. (2022). "The oldest record of Saurosphargiformes (Diapsida) from South China could fill an ecological gap in the Early Triassic biotic recovery". PeerJ. 10: e13569. doi:10.7717/peerj.13569. PMC 9288826. PMID 35855428.
  122. ^ Marsh, Adam D.; Parker, William G.; Nesbitt, Sterling J.; Kligman, Ben T.; Stocker, Michelle R. (July 2022). "Puercosuchus traverorum n. gen. n. sp.: a new malerisaurine azendohsaurid (Archosauromorpha: Allokotosauria) from two monodominant bonebeds in the Chinle Formation (Upper Triassic, Norian) of Arizona". Journal of Paleontology. 96 (S90): 1–39. Bibcode:2022JPal...96S...1M. doi:10.1017/jpa.2022.49. ISSN 0022-3360. S2CID 252609501.
  123. ^ Sues, H.-D.; Kligman, B. T.; Schoch, R. R. (2022). "An unusual Colognathus-like reptile from the Middle Triassic (Ladinian) Erfurt Formation of Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (2): 227–238. doi:10.1127/njgpa/2022/1046. S2CID 246800490.
  124. ^ Núñez Demarco, P.; Ferigolo, J.; Piñeiro, G. (2022). "Isometry in mesosaurs: Implications for growth patterns in early amniotes". Acta Palaeontologica Polonica. 67 (2): 509–542. doi:10.4202/app.00931.2021. hdl:20.500.12008/41554. S2CID 246921000.
  125. ^ Verrière, A.; Fröbisch, J. (2022). "Ontogenetic, dietary, and environmental shifts in Mesosauridae". PeerJ. 10: e13866. doi:10.7717/peerj.13866. PMC 9484468. PMID 36132215.
  126. ^ Jenkins, K. M.; Bhullar, B.-A. S. (2022). "Tooth Implantation and Attachment in Scoloparia glyphanodon (Parareptilia: Procolophonidae)". Bulletin of the Peabody Museum of Natural History. 63 (1): 27–30. doi:10.3374/014.063.0103. S2CID 248300836.
  127. ^ Van den Brandt, M. J.; Abdala, F.; Benoit, J.; Day, M. O.; Groenewald, D. P.; Rubidge, B. S. (2022). "Taxonomy, phylogeny and stratigraphical ranges of middle Permian pareiasaurs from the Karoo Basin of South Africa". Journal of Systematic Palaeontology. 19 (19): 1367–1393. doi:10.1080/14772019.2022.2035440. S2CID 247889546.
  128. ^ Werneburg, I.; Abel, P. (2022). "Modeling Skull Network Integrity at the Dawn of Amniote Diversification With Considerations on Functional Morphology and Fossil Jaw Muscle Reconstructions". Frontiers in Ecology and Evolution. 9: Article 799637. doi:10.3389/fevo.2021.799637.
  129. ^ Abel, P.; Pommery, Y.; Ford, D. P.; Koyabu, D.; Werneburg, I. (2022). "Skull Sutures and Cranial Mechanics in the Permian Reptile Captorhinus aguti and the Evolution of the Temporal Region in Early Amniotes". Frontiers in Ecology and Evolution. 10: Article 841784. doi:10.3389/fevo.2022.841784.
  130. ^ Bazzana, K. D.; Evans, D. C.; Bevitt, J. J.; Reisz, R. R. (2022). "Endocasts of the basal sauropsid Captorhinus reveal unexpected neurological diversity in early reptiles". The Anatomical Record. 306 (3): 552–563. doi:10.1002/ar.25100. PMID 36240106. S2CID 252896541.
  131. ^ Sidor, C. A.; Ide, O.; Larsson, H. C. E.; O'Keefe, F. R.; Smith, R. M. H.; Steyer, J.-S.; Modesto, S. P. (2022). "The vertebrate fauna of the upper Permian of Niger—XI. Cranial material of a juvenile Moradisaurus grandis (Reptilia: Captorhinidae)" (PDF). Journal of Vertebrate Paleontology. 41 (5): e2030345. doi:10.1080/02724634.2021.2030345. S2CID 247340707.
  132. ^ Buffa, V.; Frey, E.; Steyer, J.-S.; Laurin, M. (2022). "The postcranial skeleton of the gliding reptile Coelurosauravus elivensis Piveteau, 1926 (Diapsida, Weigeltisauridae) from the late Permian Of Madagascar". Journal of Vertebrate Paleontology. 42 (1): e2108713. Bibcode:2022JVPal..42E8713B. doi:10.1080/02724634.2022.2108713. S2CID 252173865.
  133. ^ Jenkins, K. M.; Meyer, D. L.; Lewis, P. J.; Choiniere, J. N.; Bhullar, B.-A. S. (2022). "Re-description of the early Triassic diapsid Palacrodon from the lower Fremouw formation of Antarctica". Journal of Anatomy. 241 (6): 1441–1458. doi:10.1111/joa.13770. PMC 9644968. PMID 36168715.
  134. ^ Bindellini, G.; Dal Sasso, C. (2022). "First skeletal remains of Helveticosaurus from the Middle Triassic Italian outcrops of the Southern Alps, with remarks on an isolated tooth". Rivista Italiana di Paleontologia e Stratigrafia. 128 (3): 625–641. doi:10.54103/2039-4942/17397. S2CID 252750395.
  135. ^ Herrera-Flores, J. A.; Stubbs, T. L.; Sour-Tovar, F. (2022). "Redescription of the type specimens for the Late Jurassic rhynchocephalian Opisthias rarus and a new specimen of Theretairus antiquus from Quarry 9, Morrison Formation, Wyoming, USA". Acta Palaeontologica Polonica. 67 (3): 623–630. doi:10.4202/app.00929.2021. S2CID 249737735.
  136. ^ Anantharaman, S.; Demar, D. G.; Sivakumar, R.; Dassarma, D. C.; Wilson Mantilla, G. P.; Wilson Mantilla, J. A. (2022). "First rhynchocephalian (Reptilia, Lepidosauria) from the Cretaceous–Paleogene of India". Journal of Vertebrate Paleontology. 42 (1). e2118059. Bibcode:2022JVPal..42E8059A. doi:10.1080/02724634.2022.2118059. S2CID 252558728.
  137. ^ Tałanda, M.; Fernandez, V.; Panciroli, E.; Evans, S. E.; Benson, R. J. (2022). "Synchrotron tomography of a stem lizard elucidates early squamate anatomy". Nature. 611 (7934): 99–104. Bibcode:2022Natur.611...99T. doi:10.1038/s41586-022-05332-6. PMID 36289329. S2CID 253160713.
  138. ^ Wang, W.; Shang, Q.; Cheng, L.; Wu, X.-C.; Li, C. (2022). "Ancestral Body Plan and Adaptive Radiation of Sauropterygian Marine Reptiles". iScience. 25 (12). 105635. Bibcode:2022iSci...25j5635W. doi:10.1016/j.isci.2022.105635. PMC 9722468. PMID 36483013.
  139. ^ Scheyer, T. M.; Oberli, U.; Klein, N.; Furrer, H. (2022). "A large osteoderm-bearing rib from the Upper Triassic Kössen Formation (Norian/Rhaetian) of eastern Switzerland". Swiss Journal of Palaeontology. 141 (1): Article 1. doi:10.1186/s13358-022-00244-4. PMC 8866377. PMID 35250843.
  140. ^ Qin, W.; Yi, H.; Gao, K. (2022). "A neomorphic ossification connecting the braincase, squamosal, and quadrate in choristoderan reptiles: insights from μCT data". Fossil Record. 25 (1): 1–10. doi:10.3897/fr.25.79595. S2CID 246580853.
  141. ^ Wang, M.; Xing, L.; Niu, K.; Liang, Q.; Evans, S. E. (2022). "A new specimen of the Early Cretaceous long-necked choristodere Hyphalosaurus from Liaoning, China with exceptionally-preserved integument". Cretaceous Research. 144. 105451. doi:10.1016/j.cretres.2022.105451. S2CID 254803134.
  142. ^ de Souza, R. B. B.; Klein, W. (2022). "Modeling of the respiratory system of the long-necked Triassic reptile Tanystropheus (Archosauromorpha)". The Science of Nature. 109 (6). 55. Bibcode:2022SciNa.109...55D. doi:10.1007/s00114-022-01824-7. PMID 36331664. S2CID 253269489.
  143. ^ Scartezini, C. A.; Soares, M. B. (2023). "Assessing the diversity of hidden dental morphology in Hyperodapedontinae rhynchosaurs (Archosauromorpha, Rhynchosauria)". Historical Biology: An International Journal of Paleobiology. 35: 58–73. doi:10.1080/08912963.2021.2022133. S2CID 245826916.
  144. ^ Mukherjee, D.; Ray, S. (2022). "Pachyosteosclerosis, rhamphotheca and enhanced sensory capabilities of the premaxillae of Hyperodapedon (Archosauromorpha, Rhynchosauria): implications for foraging at the sediment–water interface". Palaeontology. 65 (6): e12626. Bibcode:2022Palgy..6512626M. doi:10.1111/pala.12626. S2CID 253536021.
  145. ^ Chambi-Trowell, S. A. V.; Whiteside, D. I.; Skinner, M.; Benton, M. J.; Rayfield, E. J. (2022). "Phylogenetic relationships of the European trilophosaurids Tricuspisaurus thomasi and Variodens inopinatus". Journal of Vertebrate Paleontology. 41 (4): e1999250. doi:10.1080/02724634.2021.1999250. S2CID 246792624.
  146. ^ Wilson, J. D.; Wisniewski, A.; Nesbitt, S.; Bever, G. S. (2022). "Comparative braincase morphology of Trilophosaurus buettneri and the early evolution of the pan-archosaurian neurocranium". Journal of Vertebrate Paleontology. 42 (1). e2123712. Bibcode:2022JVPal..42E3712W. doi:10.1080/02724634.2022.2123712. S2CID 253258476.
  147. ^ Sengupta, S.; Bandyopadhyay, S. (2022). "The osteology of Shringasaurus indicus, an archosauromorph from the Middle Triassic Denwa Formation, Satpura Gondwana Basin, Central India". Journal of Vertebrate Paleontology. 41 (5): e2010740. doi:10.1080/02724634.2021.2010740. S2CID 247038160.
  148. ^ Simões, T. R.; Kammerer, C. F.; Caldwell, M. W.; Pierce, S. E. (2022). "Successive climate crises in the deep past drove the early evolution and radiation of reptiles". Science Advances. 8 (33): eabq1898. Bibcode:2022SciA....8.1898S. doi:10.1126/sciadv.abq1898. PMC 9390993. PMID 35984885.
  149. ^ Gutarra, S.; Stubbs, T. L.; Moon, B. C.; Palmer, C.; Benton, M. J. (2022). "Large size in aquatic tetrapods compensates for high drag caused by extreme body proportions". Communications Biology. 5 (1): Article number 380. doi:10.1038/s42003-022-03322-y. PMC 9051157. PMID 35484197.
  150. ^ Bolet, A.; Stubbs, T. L.; Herrera-Flores, J. A.; Benton, M. J. (2022). "The Jurassic rise of squamates as supported by lepidosaur disparity and evolutionary rates". eLife. 11: e66511. doi:10.7554/eLife.66511. PMC 9064307. PMID 35502582.
  151. ^ Buck, P. V.; Ghilardi, A. M.; Peixoto, B. C. P. M.; Aureliano, T.; Fernandes, M. A. (2022). "Lacertoid tracks from the Botucatu Formation (Lower Cretaceous) with different locomotor behaviors: A new trackmaker with novel paleoecological implications". Journal of South American Earth Sciences. 116: Article 103825. Bibcode:2022JSAES.11603825B. doi:10.1016/j.jsames.2022.103825.
  152. ^ Bestwick, J.; Godoy, P. L.; Maidment, S. C. R.; Ezcurra, M. D.; Wroe, M.; Raven, T. J.; Bonsor, J. A.; Butler, R. J. (2022). "Relative skull size evolution in Mesozoic archosauromorphs: potential drivers and morphological uniqueness of erythrosuchid archosauriforms". Palaeontology. 65 (3): e12599. Bibcode:2022Palgy..6512599B. doi:10.1111/pala.12599. S2CID 249112361.