Wolfgang A. Tomé

From Wikipedia, the free encyclopedia
Wolfgang Axel Tomé
Born
NationalityAmerican
Alma materUniversity of Florida
University of Denver
University of Tübingen
AwardsScholar of the Studienstiftung des Deutschen Volkes (1987)
Doctoral Scholar of the Studienstiftung des Deutschen Volkes (1992)
Fellow, American Association of Physicists in Medicine (FAAPM) (2010)
Fellow, American Society for Radiation Oncology (FASTRO) (2017)
Scientific career
FieldsPhysics, mathematics, medical physics, radiation oncology, neurology
InstitutionsAlbert Einstein College of Medicine
Montefiore Medical Center
University of Wisconsin
University of Wollongong
Thesis Quantization and Representation Independent Propagators  (1995)
Doctoral advisorJohn R. Klauder
Other academic advisorsStanley P. Gudder

Wolfgang Axel Tomé is a physicist working in medicine as a researcher, inventor, and educator. He is noted for his contributions to the use of photogrammetry in high precision radiation therapy;[1][2] his work on risk adaptive radiation therapy which is based on the risk level for recurrence in tumor sub-volumes using biological objective functions;[3][4][5] and the development of hippocampal avoidant cranial radiation therapy techniques to alleviate hippocampal-dependent neurocognitive impairment following cranial irradiation.[6][7][8][9][10][11][12]

He is the author of Path Integrals on Group manifolds[13] and the co-author of Dose Painting IMRT Using Biological Parameters.[14] Together with Anatoly Pinchuk and Jamey Weichert, he is the inventor of long-lived tumor specific Gadolinium-based agents for imaging and therapy.[15] He has more than 250 articles published in various areas of medical and mathematical physics (cf. PubMed, MATHSCINET), and 10 patents[16] to his credit. In addition, he has been actively involved in a number of AAPM task groups,[17] and the AAPM Working group on Biological Effects of Hypofractionated Radiotherapy/SBRT.

In recognition of his distinguished and significant contributions to the fields of medical physics and radiation oncology he has been bestowed the distinctions and titles of Fellow of the American Association of Physicists in Medicine (FAAPM) in 2010, and Fellow of the American Society for Radiation Oncology (FASTRO) in 2017.

References[edit]

  1. ^ Tome, W. A.; Meeks, S. L.; Buatti, J. M.; Bova, F. J.; Friedman, W. A.; Li, Z. (2000). "A high-precision system for conformal intracranial radiotherapy". International Journal of Radiation Oncology, Biology, Physics. 47 (4): 1137–1143. doi:10.1016/s0360-3016(00)00502-2. PMID 10863087.
  2. ^ Tomé, W. A.; Meeks, S. L.; McNutt, T. R.; Buatti, J. M.; Bova, F. J.; Friedman, W. A.; Mehta, M. (2001). "Optically guided intensity modulated radiotherapy". Radiotherapy and Oncology. 61 (1): 33–44. doi:10.1016/s0167-8140(01)00414-5. PMID 11578726.
  3. ^ Tomé, W. A.; Fowler, J. F. (2000). "Selective boosting of tumor subvolumes". International Journal of Radiation Oncology, Biology, Physics. 48 (2): 593–599. doi:10.1016/s0360-3016(00)00666-0. PMID 10974480.
  4. ^ Kim, Y.; Tomé, W. A. (2006). "Risk-adaptive optimization: Selective boosting of high-risk tumor subvolumes". International Journal of Radiation Oncology, Biology, Physics. 66 (5): 1528–1542. doi:10.1016/j.ijrobp.2006.08.032. PMC 2423330. PMID 17126211.
  5. ^ Kim, Y.; Tomé, W. A. (2010). "Dose-painting IMRT optimization using biological parameters". Acta Oncologica. 49 (8): 1374–1384. doi:10.3109/02841861003767539. PMID 20429729. S2CID 207455348.
  6. ^ Gutiérrez, A. N.; Westerly, D. C.; Tomé, W. A.; Jaradat, H. A.; MacKie, T. R.; Bentzen, S. M.; Khuntia, D.; Mehta, M. P. (2007). "Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: A planning study". International Journal of Radiation Oncology, Biology, Physics. 69 (2): 589–597. doi:10.1016/j.ijrobp.2007.05.038. PMC 2350212. PMID 17869672.
  7. ^ Bender, E. T.; Tomé, W. A. (2011). "Distribution of brain metastases: Implications for non-uniform dose prescriptions". The British Journal of Radiology. 84 (1003): 649–658. doi:10.1259/bjr/30173406. PMC 3473483. PMID 21697413.
  8. ^ Gondi, V.; Tolakanahalli, R.; Mehta, M. P.; Tewatia, D.; Rowley, H.; Kuo, J. S.; Khuntia, D.; Tomé, W. A. (2010). "Hippocampal-sparing whole-brain radiotherapy: A "how-to" technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy". International Journal of Radiation Oncology, Biology, Physics. 78 (4): 1244–1252. doi:10.1016/j.ijrobp.2010.01.039. PMC 2963699. PMID 20598457.
  9. ^ Shen, J.; Bender, E.; Yaparpalvi, R.; Kuo, H. C.; Basavatia, A.; Hong, L.; Bodner, W.; Garg, M. K.; Kalnicki, S.; Tomé, W. A. (2015). "An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)". Medical Dosimetry. 40 (3): 205–209. doi:10.1016/j.meddos.2014.11.007. PMID 25605507.
  10. ^ Gondi, V.; Hermann, B. P.; Mehta, M. P.; Tomé, W. A. (2013). "Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors". International Journal of Radiation Oncology, Biology, Physics. 85 (2): 348–354. doi:10.1016/j.ijrobp.2012.11.031. PMC 3462659. PMID 23312272.
  11. ^ Gondi, V.; Pugh, S. L.; Tomé, W. A.; Caine, C.; Corn, B.; et al. (2014). "Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): A phase II multi-institutional trial". Journal of Clinical Oncology. 32 (34): 3810–3816. doi:10.1200/JCO.2014.57.2909. PMC 4239303. PMID 25349290.
  12. ^ Brown, P. D.; Gondi, V.; Pugh, S.; Tomé, W. A.; Wefel, J. S.; et al. (2020). "Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001". Journal of Clinical Oncology. 38 (10): 1019–1029. doi:10.1200/JCO.19.02767. hdl:11245.1/0c70987f-bc23-40b0-8248-afc3b94f773b. PMC 7106984. PMID 32058845.
  13. ^ Tomé W. (1998). Path Integrals on Group Manifolds: The Representation Independent Propagator for General Lie Groups. New York: World Scientific Publishing Company.
  14. ^ Kim Y. and Tomé W. (2014). Dose Painting IMRT Using Biological Parameters. Saarbrücken: Scholars' Press.
  15. ^ Patent No. US 10,265,398 B2.
  16. ^ Patent No. US 6,974,254 B2; Patent No. US 7,508,967 B2; Patent No. US 7,551,717 B2; Patent No. US 8,526,692 B2; Patent No. US 8,897,857 B2; Patent No. WO2012069965 A1; Patent No. US 10,007,961 B2; Patent No. MX2017004402A; Patent No. US 10,265,398 B2; Patent No. 11,612,716 B2.
  17. ^ AAPM TG 101: Stereotactic Body Radiation Therapy (SBRT); AAPM TG 147: QA for non-radiographic localization and positioning systems; AAPM TG 154: Quality Assurance of Ultrasound Guided Radiotherapy; and AAPM TG 302: Surface Image Guided Radiotherapy.

External links[edit]