Jørgen Fredsøe

From Wikipedia, the free encyclopedia

Jørgen Fredsøe (1947) is a Danish hydraulic engineer who is recognized for his contributions within bed form dynamics in rivers and the marine environment and coastal morphology including bars and beach undulations. Together with professor B. Mutlu Sumer he initiated the research on scour (erosion) in the seabed around coastal structures (such as offshore windturbines) applying detailed hydrodynamic interpretations. He was born in Randers, Denmark.

Jørgen Fredsøe

Academic life[edit]

Fredsøe has a M.Sc. in 1971 and a Ph.D. in Civil Engineering in 1974, Technical University of Denmark. In 1984 he got the Dr. Tech. title with the Thesis: Sediment Transport in Currents and Waves (see e.g.[1]), also at the Technical University of Denmark. He joined the faculty in Civil Engineering from 1974, and became a full professor in 1985. In 1979 he was visiting researcher at Iowa Institute of Hydraulic Research, University of Iowa, USA.

Awards[edit]

Coastal Dynamic Award, 2005. Best paper awards, ASCE: American Society Civil Engineers), 1992 and 2005 (named Karl Emil Hilgard Prize). ISOPE Award 1992.

Research[edit]

The research covers six main topics:

  • River Morphology (bed forms,[2][3][4][5][6][7][8] meandering/braiding[9]) and sedimentation of navigation channels.[10][11][12]
  • Sediment transport i flowing water and in combined waves and current (the coastal zone).[13][14][15][16]
  • Coastal morphology: Dynamics of bars, longshore undulations; long- and cross shore sediment transport in coastal zones.[17][18][19][20][21]
  • Wave boundary layers.[22][23][24][25]
  • Erosion around offshore structures.[26][27][28]
  • Forces on and vibration of offshore structures such as pipelines and wind turbine towers.[29][30][31]

Invited review papers.[7][8][32] Research papers.[1]

Books[edit]

  • The Mechanics of Scour in the Marin Environment[33]
  • Hydrodynamics Around Cylindrical Structures[34]
  • Mechanics of Coastal Sediment Transport[35]
  • Hydrodynamics[36]

Other research activities[edit]

  • Coordinator of SASME-Surf and swash zone mechanics (EU-funded) and several frame research programs financed by Danish Technical Research Council.
  • Chairman (with prof. Seminara) for Euromech 215 "Sediment transport in the Marin and Fluvial Environment" and (with Prof. Foti) Euromech 251 "Sea Wave Boundary Layer".

Other[edit]

  • Member of the Council, the Danish Academy of Technical Sciences (ATV) 1996-2000.
  • Institute Director ISVA (Institute of Hydrodynamics and Hydraulic Engineering), DTU (Technical University of Denmark) 1996-2000.
  • Next to his university job, he worked as a consultant for many Danish Consulting companies, especially DHI and LICengineering Ltd both specialized in Hydraulic Engineering. In addition he has worked for the Danish Coastal Authority, for the World Bank (China and Bangladesh) and for public authorities in US, Ireland and Iceland. Latest he had a two-year employment 2017-2020 in India (related to Indus, Ganges and Brahmaputra rivers).

References[edit]

  1. ^ a b Fredsøe, Jørgen. "GoogleScolar citations Jørgen Fredsøe".
  2. ^ Fredsøe, J (1974). "On the development of dunes in erodible channels". Journal of Fluid Mechanics. 64: 1-16. Bibcode:1974JFM....64....1F. doi:10.1017/S0022112074001960. S2CID 122383029.
  3. ^ Fredsøe, J (1982). "Shape and dimensions of Stationary Dunes in Rivers". Journal of the Hydraulics Division. 108 (8): 932-947. doi:10.1061/JYCEAJ.0005896.
  4. ^ Tjerry, Søren; Fredsøe, Jørgen (2005). "Calculation of dune morphology". Journal of Geophysical Research: Earth Surface. 110.F4 (F4). Bibcode:2005JGRF..110.4013T. doi:10.1029/2004JF000171.
  5. ^ Niemann, S. L.; Fredsøe, J; Jacobsen, N. G. (2010). "Sand dunes in steady flow at low Froude numbers: Dune height evolution and flow resistance". Journal of Hydraulic Engineering. 137: 5-14. doi:10.1061/(ASCE)HY.1943-7900.0000255.
  6. ^ Fredsøe, J (1979). "Unsteady flow in straight alluvial streams: Modification of individual dunes". Journal of Fluid Mechanics. 91 (3): 497-512. Bibcode:1979JFM....91..497F. doi:10.1017/S002211207900029X. S2CID 121214947.
  7. ^ a b Engelund, F. A.; Fredsøe, J (1982). "Sediment ripples and dunes". Annual Review of Fluid Mechanics. 14: 13-37. Bibcode:1982AnRFM..14...13E. doi:10.1146/annurev.fl.14.010182.000305.
  8. ^ a b Engelund, F. A.; Fredsøe, J (1982). Hydraulic Theory of Alluvial Rivers. Advances in Hydroscience. Vol. 13. p. 187-215. doi:10.1016/B978-0-12-021813-4.50009-3. ISBN 978-0-12-021813-4.
  9. ^ Fredsøe, J (1978). "Meandering and Braiding of Rivers". Journal of Fluid Mechanics. 84 (4): 609-624. Bibcode:1978JFM....84..609F. doi:10.1017/S0022112078000373. S2CID 123613877.
  10. ^ Fredsøe, J (1979). "Sedimentation of river navigation channels". Journal of the Hydraulics Division. 104 (2): 223-236. doi:10.1061/JYCEAJ.0004933.
  11. ^ Fredsøe, J (1979). "Natural Backfilling of Pipeline Trenches". Journal of Petroleum Technology. 31 (10): 1223-1230. doi:10.2118/7251-PA.
  12. ^ Jensen, J. H.; Fredsøe, J (2001). "Sediment transport and backfilling of trenches in oscillatory flow". Journal of Waterway, Port, Coastal, and Ocean Engineering. 127 (5): 272-281. doi:10.1061/(ASCE)0733-950X(2001)127:5(272).
  13. ^ Engelund, F. A.; Fredsøe, J (1976). "A Sediment Transport Model for Straight Alluvial Channels". Nordic Hydrology. 7 (5): 293-306. doi:10.2166/nh.1976.0019.
  14. ^ Fredsøe, J (1984). "Turbulent Boundary Layer in Wave‐current Motion". Journal of Hydraulic Engineering. 110 (8): 1103-1120. doi:10.1061/(ASCE)0733-9429(1984)110:8(1103).
  15. ^ Fredsøe, J; Andersen, O. H.; Silberg, S (1985). "Distribution of suspended sediment in large waves". Journal of Waterway, Port, Coastal, and Ocean Engineering. 111 (6): 1041-1059. doi:10.1061/(ASCE)0733-950X(1985)111:6(1041).
  16. ^ Deigaard, R; Fredsøe, J; Hedegaard, I. B. (1986). "Suspended sediment in the surf zone". Journal of Waterway, Port, Coastal, and Ocean Engineering. 112 (1): 115-118. doi:10.1061/(ASCE)0733-950X(1986)112:1(115).
  17. ^ Fredsøe, J; Brøker, I. H. (1983). "Shape of oscillatory ripples". Progress Report. Vol. 58. Institute of Hydrodynamics and Hydraulic Engineering. p. 19-29.
  18. ^ Kaergaard, K; Fredsøe, J (2013). "Numerical modelling of shoreline undulations part 1: Constant wave climate". Coastal Engineering. 75: 64-76. doi:10.1016/j.coastaleng.2012.11.006.
  19. ^ Jacobsen, N. G.; Fredsøe, J (2014). "Formation and development of a breaker bar under regular waves. Part 2: Sediment transport and morphology". Coastal Engineering. 88: 55-68. doi:10.1016/j.coastaleng.2014.01.015.
  20. ^ Jacobsen, N. G.; Fredsøe, J (2014). "Cross-shore redistribution of nourished sand near a breaker bar". Journal of Waterway, Port, Coastal, and Ocean Engineering. 140 (2): 125-134. doi:10.1061/(ASCE)WW.1943-5460.0000233.
  21. ^ Kristensen, S. E.; Drønen, N; Deigaard, R; Fredsøe, J (2013). "Hybrid morphological modelling of shoreline response to a detached breakwater". Coastal Engineering. 71: 13-27. doi:10.1016/j.coastaleng.2012.06.005.
  22. ^ Jensen, B. L.; Sumer, B. M.; Fredsøe, J (1989). "Turbulent oscillatory boundary layers at high Reynolds numbers". Journal of Fluid Mechanics. 206: 265-297. Bibcode:1989JFM...206..265J. doi:10.1017/S0022112089002302. S2CID 56433271.
  23. ^ Fredsøe, J; Andersen, K. H.; Sumer, B. M. (1999). "Waves plus current over a ripple-covered bed". Coastal Engineering. 38 (4): 177-221. doi:10.1016/S0378-3839(99)00047-2.
  24. ^ Fredsøe, J; Sumer, B. M.; Kozakiewicz, A (2003). "Effect of externally generated turbulence on wave boundary layer". Coastal Engineering. 49 (3): 155-183. doi:10.1016/S0378-3839(03)00032-2.
  25. ^ Carstensen, Stefan; Sumer, B. Mutlu; Fredsoe, Jorgen (2010). "Coherent structures in wave boundary layers. Part 1: Oscillatory motion". Journal of Fluid Mechanics. 646: 207-231. Bibcode:2010JFM...646..169C. doi:10.1017/S0022112009992825. S2CID 122467923.
  26. ^ Fredsøe, J; Sumer, Mutlu B.; Arnskov, M. M. (1992). "Time scale for wave/current scour below pipelines". International Journal of Offshore and Polar Engineering. 2 (1): 13-17.
  27. ^ Sumer, B. M.; Fredsøe, J (1990). "Scour below pipelines in waves". Journal of Waterway, Port, Coastal, and Ocean Engineering. 116 (3): 307-323. doi:10.1061/(ASCE)0733-950X(1990)116:3(307).
  28. ^ Sumer, B. M.; Fredsøe, J; Christiansen, N (1992). "Scour around vertical pile in Waves". Journal of Waterway, Port, Coastal, and Ocean Engineering. 118 (1): 15-31. doi:10.1061/(ASCE)0733-950X(1992)118:1(15).
  29. ^ Fredsøe, J; Hansen, E. A. (1987). "Lift forces on pipelines in steady flow". Journal of Waterway, Port, Coastal, and Ocean Engineering. 113 (2): 139-155. doi:10.1061/(ASCE)0733-950X(1987)113:2(139).
  30. ^ Fredsøe, J; Sumer, B. M.; Andersen, J; Hansen, E. A. (1987). "Transverse vibrations of a cylinder very close to a plane wall". Journal of Offshore Mechanics and Arctic Engineering. 109 (1): 52-60. doi:10.1115/1.3256990.
  31. ^ Kozakiewicz, A; Sumer, B. M.; Fredsøe, J (1992). "Spanwise correlation on a vibrating cylinder near a wall in oscillatory flows". Journal of Fluids and Structures. 6 (3): 371-392. Bibcode:1992JFS.....6..371K. doi:10.1016/0889-9746(92)90015-U.
  32. ^ Fredsøe, J (2016). "Pipeline-seabed interaction" (PDF). Journal of Waterway, Port, Coastal, and Ocean Engineering. 142 (6). doi:10.1061/(ASCE)WW.1943-5460.0000352.
  33. ^ Sumer, B. M.; Fredsøe, J (2002). The Mechanics of Scour in the Marin Environment. World Scientific. Vol. 17. Advanced Series on Ocean Engineering. ISBN 978-981-02-4930-4.
  34. ^ Sumer, B. M.; Fredsøe, J (2006). Hydrodynamics around cylindrical structures. Advanced Series on Ocean Engineering. Vol. 26. World Scientific. ISBN 978-981-270-039-1.
  35. ^ Fredsøe, J; Deigaard, R (1992). Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engineering. Vol. 3. World Scientific. ISBN 981-02-0841-3.
  36. ^ Fredsøe, J (1991). Hydrodynamics. Den private Ingeniørfond. ISBN 87-7381-054-1 – via ResearchGate.