2019 in primate paleontology

From Wikipedia, the free encyclopedia
List of years in primate paleontology
In mammal paleontology
2016
2017
2018
2019
2020
2021
2022
In paleontology
2016
2017
2018
2019
2020
2021
2022
In science
2016
2017
2018
2019
2020
2021
2022
+...

This article records new taxa of fossil primates of every kind are scheduled to be described during the year 2019, as well as other significant discoveries and events related to paleontology of primates that are scheduled to occur in the year 2019.

New taxa[edit]

Name Novelty Status Authors Age Type locality Country Notes Images
Alophe[1][2] Gen. et sp. nov Valid Rasmussen et al. Early Miocene  Kenya An early Old World monkey. The type species is A. metios.
Anthradapis[3] Gen. et sp. nov Chavasseau et al. Eocene  Vietnam A member of the family Sivaladapidae. The type species is A. vietnamensis.
Aseanpithecus[4] Gen. et sp. nov Valid Jaeger et al. Eocene Pondaung  Myanmar An early member of Anthropoidea. The type species is A. myanmarensis.
Bownomomys[5] Gen. et comb. nov Valid Morse et al. Eocene  United States
( Wyoming)
An early primate. Genus includes "Teilhardina" americana Bown (1976) and "Teilhardina" crassidens Bown & Rose (1987)
Cercopithecoides bruneti[6] Sp. nov Valid Pallas et al. Late Miocene  Chad
Danuvius[7] Gen. et sp. nov Valid Böhme et al. Miocene  Germany A member of the family Hominidae. The type species is D. guggenmosi.
Homo luzonensis[8] Sp. nov Valid Détroit et al. Late Pleistocene  Philippines A species of Homo
Homunculus vizcainoi[9] Sp. nov Valid Kay & Perry Miocene Santa Cruz  Argentina A New World monkey
Nanopithecus[10] Gen. et sp. nov Valid Plavcan et al. Pliocene Kanapoi  Kenya A relative of guenons. Genus includes new species N. browni.

Parvimico[11]

Gen. et sp. nov

Valid

Kay et al.

Early Miocene

Bala

 Peru

A New World monkey of uncertain phylogenetic placement. Genus includes new species P. materdei.

General research[edit]

  • A study on frequency of insectivory in primates, its possible causes and its implications for the hypotheses of primate evolution from an insectivorous ancestor is published by Scott (2019).[12]
  • A study on the evolution of the talus bone in primates, and on its implications for the knowledge of the adaptive origins of crown primates, is published by Yapuncich et al. (2019).[13]
  • A study on the expansion in brain mass throughout primate evolution, based on data from extant and fossil taxa, is published online by Melchionna et al. (2019).[14]
  • A study comparing mobility and home ranges of members of living and extinct lemur genera is published by Crowley & Godfrey (2019).[15]
  • A study on the variability of adapiform humeral elements from Quercy collections will be published by Marigó, Verrière & Godinot (2019).[16]
  • A study on the turbinal morphology of Rooneyia viejaensis is published by Lundeen & Kirk (2019).[17]
  • A study on the evolutionary history of the New World monkeys (especially on the evolution of their body mass, changes of the mean latitude of their geographic range, and species diversification rates), based on data from extant and fossil species, will be published by Silvestro et al. (2019).[18]
  • A study on the relationship between brain size and skull morphology in extant New World monkeys, and on its implications for identifying relatives of howler monkeys in the fossil record, is published by Halenar-Price & Tallman (2019).[19]
  • Putative stem platyrrhine Dolichocebus gaimanensis is reinterpreted as a cebine closely related to living squirrel monkeys by Rosenberger (2019), who also considers D. gaimanensis and Laventiana annectens to be congeners.[20]
  • A study on the cerebral morphology of Chilecebus carrascoensis is published by Ni et al. (2019).[21]
  • A study on the variation in skull and braincase shape of extant and fossil members of the family Atelidae is published by Aristide et al. (2019).[22]
  • A study on the catarrhine capitates from the Tinderet Miocene sequence of Kenya, and on their implications for inferring locomotor diversity of Miocene catarrhines from the Tinderet sample, is published by Wuthrich, MacLatchy & Nengo (2019).[23]
  • A study on the evolution of the catarrhine hip complex since the Oligocene, based on data from a new femur of Aegyptopithecus zeuxis from the Jebel Qatrani Formation (Egypt), is published by Almécija et al. (2019).[24]
  • A revision of fossils of Mesopithecus from the late Turolian Dytiko localities (Axios Valley, Greece) is published by Koufos (2019).[25]
  • A study on phylogenetic relationships and evolutionary history of macaques, as indicated by mitochondrial genome and fossil data, is published by Roos et al. (2019).[26]
  • A study on the inner anatomy of a skull and teeth of a fossil baboon from the early Pleistocene deposits of the Australopithecus sediba-bearing site of Malapa (South Africa), which might represent the earliest fossil record of Papio angusticeps and consequently, of the modern baboon reported so far, is published by Bouchet et al. (2019).[27]
  • Two teeth of a primate belonging or related to the genus Paradolichopithecus are described from the Villafranchian of the Ridjake site (Serbia) by Radović et al. (2019).[28]
  • New hominoid canine and incisor specimens, including probable teeth of Kamoyapithecus hamiltoni and teeth of a second taxon, likely related to Nyanzapithecus pickfordi, are described from the Oligocene site of Losodok (Turkana Basin, northwestern Kenya) by Hammond, Foecke & Kelley (2019).[29]
  • Description of new fossil material of apes from the early Miocene site of Moroto II (Uganda) and study on the implications of these fossil for the taxonomic attribution of ape fossil material from this site is published by MacLatchy et al. (2019).[30]
  • Previously undescribed petrosal bone of Nacholapithecus kerioi from the earliest Middle Miocene of Kenya is reported by Kunimatsu et al. (2019), who evaluate the implications of their finding for the knowledge of the phylogenetic placement of Nacholapithecus and of the evolution of positional behavior of apes.[31]
  • A study on the diversification of skull size and shape in hominid (especially hominin) evolutionary radiations, based on data from extant and fossil taxa, is published by Rocatti & Perez (2019).[32]
  • A study comparing the prevalence of tertiary dentine in extant gorillas and chimpanzees and in fossil hominins Australopithecus africanus, Homo naledi and Paranthropus robustus is published by Towle (2019).[33]
  • A study comparing the trabecular structure in the first metatarsal bone in extant large apes and humans and in fossil hominins from Swartkrans (South Africa), and evaluating its implications for the knowledge of the locomotor behavior of fossil hominins, is published by Komza & Skinner (2019).[34]
  • A study on the variation of shape of the third metacarpal bone of apes performing different locomotor behaviors and on its implications for the knuckle-walking hypothesis for human evolution, based on data from extant apes and Australopithecus afarensis, is published by Rein (2019).[35]
  • A study on the ontogenetic variation in the thoracolumbar transition in the skeletons of juvenile and adult great apes, humans and fossil hominins is published by Nalley et al. (2019).[36]
  • A study on brain blood flow rates in extant great apes, aiming to determine brain blood flow rates in australopithecine human relatives, is published by Seymour et al. (2019).[37]
  • A study on the femoral neck cortical bone distribution in Dryopithecus fontani, evaluating its implications for the knowledge of the locomotor behavior of this species, is published by Pina et al. 2019).[38]
  • Agustí et al. (2019) report fossil evidence from the Udabno site in eastern Georgia, which they interpret as indicating the survival of Dryopithecus garedziensis (=Udabnopithecus garedziensis) in Caucasus for almost 2 million years after the extinction of the dryopithecines in Western Europe.[39]
  • A study on the anatomy of the face and maxilla of Ouranopithecus macedoniensis is published by Ioannidou et al. (2019).[40]
  • New maxilla of a member or a relative of the genus Khoratpithecus is described from the late Miocene sediments in Nakhon Ratchasima Province (Thailand) by Chaimanee et al. (2019).[41]
  • A molar attributable to Sivapithecus is described from the Miocene of the Ramnagar area (Jammu and Kashmir) by Gilbert et al. (2019), who also study the metric variation of ape molars and premolars from the Ramnagar area and from the Pothohar Plateau Chinji Formation, and attempt to determine the taxonomic diversity of known Ramnagar and Chinji hominoid specimens.[42]
  • A study on the phylogenetic relationships of Gigantopithecus, based on data from proteome sequences retrieved from tooth enamel, is published by Welker et al. (2019).[43]
  • Isolated fossil orangutan teeth are described from the Late Pleistocene Tham Prakai Phet site (Thailand) by Filoux & Wattanapituksakul (2019).[44]
  • A study on the affinities of the hominid fossils from the Early to Middle Pleistocene deposits of Java, Indonesia is published by Zanolli et al. (2019).[45]
  • A study on a possible diagnostic tooth pattern of orangutans, evaluating its implications for the taxonomic identification of isolated hominid teeth from the Pleistocene of Asia, is published by Ortiz et al. (2019).[46]
  • A study on tooth enamel thickness and development of teeth in juvenile individuals of Rudapithecus hungaricus is published by Smith et al. (2019).[47]
  • Description of a partial pelvis from Rudabánya (Hungary), attributed to Rudapithecus hungaricus, and a study on the implications of this finding for the knowledge of the body posture of R. hungaricus and for the knowledge of the ancestral anatomy of the hominin pelvis, is published by Ward et al. (2019).[48]
  • A digital reconstruction of the skull of Rudapithecus hungaricus is presented by Gunz et al. (2019).[49]
  • A study on the pelvic and lumbar anatomy of Oreopithecus bambolii is published online by Hammond et al. (2019).[50]
  • A study on genomes of extant bonobo and chimpanzee populations, presenting evidence for an ancient admixture event between bonobos and an extinct great ape population, is published by Kuhlwilm et al. (2019).[51]
  • A study on thoracic and lumbar vertebrae of living humans and chimpanzees and fossil hominins, evaluating the implications of their anatomy for the hypothesis that human individuals whose vertebrae are more similar in shape to the vertebrae of the extinct hominins have a greater propensity to develop the intervertebral disc herniation, is published by Plomp et al. (2019).[52]

General paleoanthropology[edit]

  • A study on the phylogenetic relationships of fossil hominins is published by Parins-Fukuchi et al. (2019), who find support for directly ancestral relationships in multiple hominin lineages.[53]
  • A review of anatomical differences between extant ape and human foot bones, as well as a review of the hominin foot fossil record, is published by DeSilva et al. (2019), who also conduct a cladistics analysis on hominin foot fossils.[54]
  • A study on modern and fossil mammal herbivore communities from eastern Africa spanning the last ~7 million years, aiming to determine whether modern herbivore communities are suitable analogs for the ancient ecosystems in which early hominins evolved, is published by Faith, Rowan & Du (2019).[55][56][57]
  • A study on the geographic distribution pattern of early hominin fossil occurrences over time, evaluating its implications for the knowledge of the relevance of the coastal forest in eastern Africa along the Indian Ocean for early hominin evolution, is published by Joordens et al. (2019).[58]
  • A study on the behavioral evolution in Plio-Pleistocene hominins, as inferred from archaeological data and comparison with extant hamadryas baboons, is published by Swedell & Plummer (2019).[59]
  • A study on a child tooth found in Wezmeh Cave, Iranian Zagros by Zanolli et al. (2019) revealed that it belongs to a Neanderthal.[60]
  • A study on the diversity and the environments of hominins in the early Pleistocene of the Omo-Turkana Basin (East Africa) is published by Bobe & Carvalho (2019).[61]
  • A study comparing ages at death of hominin specimens from the early Pleistocene sites of Drimolen and Swartkrans, and on their implications for inferring mechanisms of hominin skeletal accumulation at these sites, is published by Riga et al. (2019).[62]
  • A revision of Middle Pleistocene faunal record from archeological sites in Africa, and a study on its implications for inferring potential links between hominin subsistence behavior and the Early Stone Age/Middle Stone Age technological turnover, is published by Smith et al. (2019).[63]
  • A study on Acheulean and Middle Stone Age sites from the Eastern Desert (Sudan), preserving stone artifacts, is published by Masojć et al. (2019), who interpret these sites as evidence of green corridor or corridors across Sahara which made early hominin dispersal possible.[64]
  • A study aiming to determine skull morphology of the last common ancestor of all modern humans, and comparing it with skulls of Late Middle Pleistocene African hominins, is published by Mounier & Mirazón Lahr (2019).[65]
  • Description of new fossil material of Ardipithecus ramidus from the Gona Project study area (Ethiopia), providing new information on the locomotor pattern and the anatomy of the hand of this species, is published by Simpson et al. (2019).[66]
  • A study on the phylogenetic relationships of Ardipithecus ramidus is published by Mongle, Strait & Grine (2019).[67]
  • A study on the morphology and morphometric affinities of the foot of Ardipithecus ramidus, evaluating its implications for the knowledge of likely anatomy of the foot of the chimpanzee–human last common ancestor, is published by Prang (2019).[68]
  • A study on the age of hominin fossils representing the genera Australopithecus, Paranthropus and Homo from the Cradle of Humankind in South Africa is published by Pickering et al. (2019);[69] the study is subsequently criticized by Hopley et al. (2021).[70][71]
  • A study on calcium isotopic patterns in tooth enamel of Australopithecus africanus, Paranthropus robustus and early members of the genus Homo from South Africa, evaluating their implications for the knowledge of nursing behavior of these hominins, is published by Tacail et al. (2019).[72]
  • A study on cross-sectional geometric properties of three humeri of specimens of Paranthropus boisei, and on their implications for inferring the function of upper limbs of P. boisei, is published by Lague et al. (2019).[73]
  • A study on the surface modifications of the postcranial remains of the Paranthropus boisei specimen OH80 from the Olduvai Gorge (Tanzania) is published by Aramendi et al. (2019), who consider it most likely that this specimen was consumed by carnivores (probably felids).[74]
  • A study on defects in the teeth of specimens of Paranthropus robustus, interpreted as possible evidence that members of this species were affected by amelogenesis imperfecta, is published by Towle & Irish (2019).[75]
  • A study on the anatomy of the inner ear of the Paranthropus specimen DNH 22 from Drimolen (South Africa) is published by Beaudet (2019).[76]
  • A study on the cortical bone distribution along the entire femoral neck compartment of Paranthropus robustus is published by Cazenave et al. (2019).[77]
  • A study on the anatomy of the braincase of the Australopithecus specimen Stw 573 ("Little Foot"), and on its significance for inferring the course of the evolution of the hominin brain, is published by Beaudet et al. (2019).[78]
  • A study on the anatomy of the bony labyrinth of the Australopithecus specimen Stw 573 is published by Beaudet et al. (2019).[79]
  • Description of upper and lower long limb bones of the Australopithecus specimen Stw 573 is published by Heaton et al. (2019).[80]
  • Description of the anatomy of the skull of the Australopithecus specimen Stw 573 is published by Clarke & Kuman (2019).[81]
  • A study on the diet of Australopithecus anamensis is published by Quinn (2019).[82]
  • Fossils of Australopithecus anamensis constituting the oldest known axial remains of Australopithecus are described from the Assa Issie locality (Middle Awash, Ethiopia) by Meyer & Williams (2019).[83]
  • A nearly complete hominin cranium assigned to the species Australopithecus anamensis is described from Woranso-Mille (Ethiopia) by Yohannes Haile-Selassie et al. (2019);[84] a study on the age of this specimen and on the environment it lived in is published by Saylor et al. (2019).[85]
  • Perspectives on the validity of the species name Australopithecus prometheus and its availability for use are published by Berger & Hawks (2019)[86] and Clarke (2019).[87][88]
  • A study on the postnatal brain growth in Australopithecus afarensis and Australopithecus africanus is published by Cofran (2019).[89]
  • Two mandibles of juvenile hominins belonging to the species Australopithecus afarensis are described from the Pliocene Woranso-Mille site (Ethiopia) by Yohannes Haile-Selassie and Timothy Ryan (2019).[90]
  • A study on the origination and extinction dates of members of the Australopithecus anamensisafarensis lineage from eastern Africa, aiming to determine whether these hominins overlapped temporally with Ardipithecus ramidus and/or earliest members of the genus Homo, is published online by Du et al. (2019).[91]
  • A study on hominin fossils from Sterkfontein attributed to Australopithecus africanus, aiming to determine whether this fossil material is more likely to represent one or several species, is published by Grine (2019).[92]
  • Trace-element analysis of two specimens of Australopithecus africanus from Sterkfontein Member 4 (South Africa) is conducted by Joannes-Boyau et al. (2019), who evaluate the implications of their findings for the knowledge of the dietary cycles and ecological behaviours of members of this species.[93]
  • A study comparing temporal ranges of Australopithecus sediba and early members of the genus Homo and evaluating whether A. sediba is likely to be the ancestor of members of the genus Homo is published by Andrew Du and Zeresenay Alemseged (2019).[94]
  • A study on pneumatization of temporal bone in the holotype specimen of Australopithecus sediba, comparing it with temporal bones of other African hominins and evaluating whether it can be considered a Homo-like feature of the skeleton of A. sediba, is published by Balzeau (2019).[95]
  • A study on the anatomy of the birth canal and the birth process of Australopithecus sediba is published by Laudicina, Rodriguez & DeSilva (2019).[96]
  • An assemblage of systematically flaked stone tools dated to between 2.61 and 2.58 Ma, interpreted as the earliest Oldowan tools discovered so far, is reported from Ledi-Geraru (Ethiopia) by Braun et al. (2019);[97] the study is subsequently criticized by Sahle & Gossa (2019).[98][99]
  • A nearly complete set of permanent mandibular teeth of an early member of the genus Homo is described from the upper Burgi Member of the Koobi Fora Formation (Ileret, Kenya) by Grine et al. (2019).[100]
  • A study on a dietary shift in early members of the genus Homo from East Turkana in northern Kenya, as indicated by carbon and oxygen isotopic data, is published by Patterson et al. (2019).[101]
  • A study comparing the mandibular molar root morphology of Homo naledi with those of African and Eurasian Plio-Pleistocene fossil hominins is published by Kupczik, Delezene & Skinner (2019).[102]
  • Description skull remains of Homo naledi from the Lesedi Chamber of the Rising Star Cave system (South Africa) that preserve diagnostic morphology is published by de Ruiter et al. (2019).[103]
  • A study on the neck and shaft cross-sectional structure of the femoral fossils of Homo naledi recovered in the Dinaledi Chamber of the Rising Star Cave system is published by Friedl et al. (2019).[104]
  • Description of three new femoral specimens of Homo naledi from the Lesedi Chamber of the Rising Star Cave system is published by Walker et al. (2019).[105]
  • A study on the anatomy of upper limb fossils of Homo naledi from the Lesedi Chamber of the Rising Star Cave system is published by Feuerriegel et al. (2019).[106]
  • A study comparing the deciduous teeth of Homo naledi and other hominins is published by Bailey et al. (2019).[107]
  • A study on the relative fibular/tibial strength of Turkana Boy and of Olduvai Hominid number 35 (an individual belonging to the species Homo habilis or Paranthropus boisei), comparing them with modern humans and apes, and evaluating their implications for the knowledge of the locomotor behavior of these hominins, is published by Marchi et al. (2019).[108]
  • A study on hominin footprints discovered near Ileret (Kenya) and on their implications for the knowledge of sexual dimorphism in Homo erectus is published by Villmoare, Hatala & Jungers (2019).[109]
  • A study reexamining the body mass estimates for the Homo erectus specimen KNM-ER 5428 is published by Cunningham et al. (2019).[110]
  • A study aiming to determine the developmental stage of the hominin individual KNM-ER 42700 from Ileret, based on comparisons with modern humans, chimpanzees and individuals classified as Homo erectus sensu lato, is published by Mori & Harvati (2019).[111]
  • A study on the evidence of fire at the FxJj20 Site complex in Koobi Fora dated to 1.5 Ma, evaluating its implications for the knowledge of the use of fire by early hominins, is published by Hlubik et al. (2019).[112]
  • A study on the age of the artifacts from the Dawqara Formation in the Zarqa Valley (Jordan), and on its implications for the knowledge of timing of the earliest hominin dispersal out of Africa, is published by Scardia et al. (2019).[113]
  • A study comparing variation of anatomical traits in Dmanisi hominins with that in fossil hominins and modern Homo sapiens from Africa, and aiming to evaluate the number of hominin taxa present in Dmanisi, is published by Rightmire, Margvelashvili & Lordkipanidze (2019).[114]
  • A study on bone surface modifications of Pleistocene bird fossils from Mata Menge site (Flores, Indonesia) is published by Meijer et al. (2019), who report no unambiguous evidence for exploitation of birds from Mata Menge by early hominins.[115]
  • A study on the evolution of body size on islands, focusing on the evolution of Homo floresiensis, is published by Diniz-Filho et al. (2019).[116]
  • A study on the age of hominin fossils from the Yiyuan fossil site (Shandong, China) is published by Guo et al. (2019).[117]
  • A study on the growth and development of teeth of archaic hominins from the Pleistocene site of Xujiayao (China) is published by Xing et al. (2019).[118]
  • ~300,000-y-old remains of archaic humans, dubbed the Hualongdong people,[119] including a largely complete skull, are described from Hualongdong (China) by Wu et al. (2019).[120]
  • A study on the morphology and affinities of the hominin teeth from the late Middle Pleistocene of the Yanhui Cave (Tongzi, China) is published by Xing, Martinón-Torres & Castro (2019).[121]
  • A study on the variation of shape of premolar roots in Middle Pleistocene hominins from East Asia is published by Pan et al. (2019).[122]
  • Cut marks and evidence of breakage of animal bones by hominins are reported from the Barranco León and Fuente Nueva-3 localities (Spain) by Espigares et al. (2019), who evaluate the implications of their findings for the knowledge of the subsistence strategies of hominins inhabiting the Iberian Peninsula during the Early Pleistocene.[123]
  • A study on the morphology of hominin teeth from the Middle Pleistocene sites of Arago (southeast France) and Sima de los Huesos (northern Spain), as well as on their implications for inferring how the settlement of Europe by hominins in the Middle Pleistocene occurred, is published by Bermúdez de Castro et al. (2019).[124]
  • A study on the variation of anatomical traits related to brain size and organization in the sample of hominin endocasts from Sima de los Huesos is published by Poza-Rey, Gómez-Robles & Arsuaga (2019).[125]
  • A study on the age of the hominin fossils from Sima de los Huesos is published by Demuro et al. (2019).[126]
  • A study on the anatomy of the cochlea of hominins from Sima de los Huesos, evaluating its implications for the knowledge of cochlear evolution in the genus Homo, is published by Conde-Valverde et al. (2019).[127]
  • A study on the climate in the areas of the Iberian Peninsula inhabited by hominins during the Early Pleistocene, as indicated by data from macroflora and pollen assemblages, will be published by Altolaguirre et al. (2019).[128]
  • A study evaluating the importance of the fifth digit in four technologically distinct Lower Paleolithic stone tool production behaviours is published by Key, Dunmore & Marzke (2019).[129]
  • Evidence from the Lusakert Cave 1 site in the Armenian Highlands indicative of control of fire by Middle Paleolithic hominins is presented by Brittingham et al. (2019).[130]
  • A study on the shape variation of the dental arcades in Middle Pleistocene hominin fossils will be published by Stelzer et al. (2019).[131]
  • A study on the external ballistics of replicas of Schöningen Spear II is published by Milks, Parker & Pope (2019).[132]
  • A study on unpublished hominin dental remains from the late Early Pleistocene Gran Dolina-TD6.2 level of the Sierra de Atapuerca (Spain), evaluating their implications for assessing the taxonomic validity of Homo antecessor, is published by Martinón-Torres et al. (2019).[133]
  • A study on hominin fossils from the TD6.2 unit of the Gran Dolina site (Spain) which represent the oldest known hominin remains with unquestionable signs of cannibalism, comparing them with other mammal fossils from this site with evidence of human consumption, and evaluating their implications for the knowledge of causes of early hominin cannibalism, is published by Rodríguez, Guillermo & Ana (2019).[134]
  • A study on the animal remains from the Villafranchian of the Pirro Nord site (Italy), and on their implications for the knowledge of the exploitation of animal resources by early European hominins, is published by Cheheb et al. (2019).[135]
  • A study on the taxonomical affinities of hominin teeth from the Mousterian level of Portel-Ouest (Ariège, France), dated to 44,000 ka, and on the paleobiology of the hominin group from this site, will be published by Becam & Chevalier (2019).[136]
  • Evidence of Levallois technology from the lithic assemblage of the Guanyindong Cave site in southwest China, dated to approximately 170,000–80,000 years ago, is presented by Hu et al. (2019);[137] the study is subsequently criticized by Li et al. (2019).[138][139]
  • A study on the age of fossils of Homo erectus from Ngandong (central Java, Indonesia) is published online by Rizal et al. (2019).[140]
  • Studies on the age of the hominin-associated material from the Denisova Cave (Russia) are published by Jacobs et al. (2019)[141] and Douka et al. (2019).[142]
  • A study on the morphology of a fifth finger phalanx from the Denisova Cave is published by Bennett et al. (2019).[143]
  • The Denisovan Xiahe mandible is described from the Baishiya Karst Cave (Tibetan Plateau, China) by Chen et al. (2019), representing the first record of these hominins outside the Altai Mountains;[144] subsequently, a study evaluating this fossil as possible evidence of acquisition of 3-rooted lower molars by modern human populations from Asia by the way of introgression from Denisovans is published by Bailey, Hublin & Antón (2019).[145][146][147]
  • A reconstruction of Denisovan anatomy, inferred from data from Denisovan DNA, is presented by Gokhman et al. (2019).[148]
  • A study on microscopic traces of hominin and animal activities in the Denisova Cave, providing the information on the use of this cave over the last 300,000 years, is published by Morley et al. (2019).[149]
  • The study on the Cerutti Mastodon site published by Holen et al. (2017), reporting possible evidence of an unidentified species of the genus Homo living in California 130,000 years ago,[150] is criticized by Ferrell (2019)[151] and by Sutton, Parkinson & Rosen (2019).[152]
  • A study on external auditory exostoses (dense bony growths protruding into the external auditory canal) in the skeletons of late Middle and Late Pleistocene archaic and early modern humans from western Eurasia is published by Trinkaus, Samsel & Villotte (2019).[153]
  • The discovery of new archaeological assemblage from the Moulin Quignon site (France), representing the earliest occurrence of the Acheulian technology (probably associated with the occurrence of Homo heidelbergensis) in northwest Europe above 50°N recorded so far, is reported by Antoine et al. (2019).[154]
  • A study on bifaces from the Notarchirico site (Basilicata, Italy), evaluating their implications for the knowledge of the timing and characterization of the earliest Acheulean in Western Europe, is published by Moncel et al. (2019).[155]
  • A study on the origin and evolutionary mode of the Neanderthal lineage, as indicated by data from fossil mandibles, is published by Rosas, Bastir & Alarcón (2019).[156]
  • A study on the nuclear genomes of two Neanderthal individuals (from Hohlenstein-Stadel cave in Germany and from Scladina cave in Belgium) dated to approximately 120 ka ago is published by Peyrégne et al. (2019).[157]
  • A study on demographic models that could explain presence and variations of Neanderthal portions of the genome carried by non-African individuals today is published by Villanea & Schraiber (2019), who interpret their findings as indicative of multiple episodes of interbreeding between Neanderthal and modern humans.[158]
  • A review of evidence for recovery from serious illness and injury by Neanderthals is published by Spikins et al. (2019), who argue that Neanderthal healthcare was widespread, knowledgeable and effective in reducing mortality risk, and that healthcare can be seen as part of several adaptations which allowed Neanderthals to survive in unique environments where they lived, rather than simply a cultural trait.[159]
  • A study aiming to find an explanation for the highly muscular Neanderthal body form, based on paleoecological and genetic data, is published by Stewart et al. (2019), who hypothesise that Neanderthal body reflects an adaptation to hunting conditions rather than cold.[160]
  • A study on the anomalies of Neanderthal skeletons from the Sidrón Cave (Spain), interpreted as evidence for the presence of inbreeding and low biological variability in the Neanderthal group from this site, is published by Ríos et al. (2019).[161]
  • The first anatomical reconstruction of the Eustachian tube of Neanderthals is published by Pagano, Márquez & Laitman (2019).[162]
  • A study on the diet of Neanderthals, as indicated by data from compound-specific isotope analyses of Neanderthal remains from Les Cottés cave and Grotte du Renne (France), is published by Jaouen et al. (2019).[163]
  • A study on the posture of the La Chapelle-aux-Saints 1 Neanderthal individual is published by Haeusler et al. (2019).[164]
  • A study on Neanderthal land use patterns and mobility, as indicated by data from the Payre site (the Rhone Valley, France), is published by Moncel et al. (2019).[165]
  • Description of new fossil material of the Regourdou 1 Neanderthal skeleton, providing new information on the anatomy of Neanderthal thorax, is published by Gómez-Olivencia et al. (2019).[166]
  • A study on the diet and cultural behavior of the Regourdou 1 Neanderthal individual, as indicated by data from tooth wear, is published by Fiorenza et al. (2019).[167]
  • A study exploring the possible cause of the Neanderthal population demise in terms of demographic changes is published by Degioanni et al. (2019).[168]
  • A study on introgressed Neanderthal DNA in modern humans, reevaluating the validity of the claims that Neanderthal DNA was subjected to negative selection in modern humans, is published by Petr et al. (2019).[169]
  • A study comparing Neanderthal introgression in contemporary Levantine and southern Arabian populations is published by Vyas & Mulligan (2019).[170]
  • A study on diet and mobility of the late Neanderthals and Upper Pleistocene modern humans, as indicated by stable isotopic data from individuals from the cave sites of the Troisième caverne of Goyet and Spy in Belgium, is published by Wißing et al. (2019).[171]
  • A taphonomic study on two Neanderthal individuals from the Spy Cave, aiming to determine their cause of death and whether they were buried, is published by Fernández-Jalvo & Andrews (2019).[172]
  • A study on the diet of the Spy I Neanderthal individual is published by Williams et al. (2019).[173]
  • A Neanderthal molar is described from the Pešturina Cave by Radović et al. (2019), representing the first Neanderthal specimen reported from Serbia.[174]
  • A study on the timing, intensity and environmental context of the occupation of the Middle Paleolithic El Salt site (Province of Alicante, Spain) by Neanderthals is published by Leierer et al. (2019).[175]
  • A study on the dietary patterns and the ecological niches occupied by ungulates from the Mousterian of the Covalejos Cave (Cantabria, Spain), as inferred from analyses of teeth wear and dental cementum, is published by Sánchez-Hernández et al. (2019), who evaluate the implications of their findings for the knowledge of the environmental conditions of this region, the knowledge of the age and season at the time of death these ungulates, and the knowledge of the seasonality and duration of Neanderthal occupations of the Covalejos Cave and the seasonality of their hunting activities.[176]
  • A study aiming to identify adhesive used by Neanderthals for hafting on a variety of stone tools from Middle Paleolithic Fossellone and Sant'Agostino caves (Latium, Italy) is published by Degano et al. (2019).[177]
  • A study on manganese-rich lumps recovered from the lower rockshelter at Le Moustier site (France), evaluating their implications for the knowledge of processing of manganese-rich rocks by Neanderthals, is published by Pitarch Martí et al. (2019).[178]
  • A study on the geological and cultural stratigraphy of the Ein Qashish site (Israel), and on its implications for the knowledge of Neanderthal occupation of this site, is published by Ekshtain et al. (2019).[179]
  • Evidence from Neanderthal-associated sites in Europe indicating that Neanderthals practiced catching the golden eagles is presented by Finlayson et al. (2019).[180]
  • Evidence of Châtelperronian Neanderthals using pedal phalanges of imperial eagles for symbolic practices is reported from the Cova Foradà site (Spain) by Rodríguez-Hidalgo et al. (2019).[181]
  • A study on the strategies, methods and butchery practices adopted by Neanderthals in the exploitation of the steppe bison and the aurochs, based on data from the Fumane Cave, San Bernardino Cave and De Nadale Cave (Italy), is published by Terlato et al. (2019).[182]
  • A study evaluating whether climatic changes caused depopulation of the Ach Valley (Germany) by Neanderthals during the Oxygen Isotope Stage 3 is published by Rhodes, Starkovich & Conard (2019).[183]
  • A study on the impact of the climate change during the last interglacial period on the behavior of Neanderthals living in Western Europe, based on data from Baume Moula-Guercy (France), is published by Defleur & Desclaux (2019).[184]
  • A study on DNA isolated from Neanderthal remains found in Gibraltar is published by Bokelmann et al. (2019).[185]
  • A previously unknown way to produce birch tar is presented by Schmidt et al. (2019), who evaluate the implications of their findings for a determination of whether birch tar production by Neanderthals is a proof of the presence of modern cognition and/or cultural behaviors in Neanderthals.[186]
  • Niekus et al. (2019) describe a 50,000-y-old birch tar-hafted flint tool found off the coastline of The Netherlands, likely produced by Neanderthals.[187][188][189]
  • Duveau et al. (2019) report the discovery of 257 footprints of Neanderthals from the Paleolithic site at Le Rozel (France), and investigate the size and composition of the trackmaker group.[190]
  • A study aiming to determine the reason of the delay of the replacement of Neanderthals by modern humans after their initial contact in the Levant is published by Greenbaum et al. (2019).[191]
  • A study on the dynamics of Neanderthal populations, evaluating factors which could have resulted in Neanderthal extinction, is published by Vaesen et al. (2019).[192]
  • A study aiming to infer the time at which Neanderthals and modern humans diverged, based on quantitative analyses of dental evolutionary rates in hominins and analyses of hominin phylogenetic relationships, is published by Gómez-Robles (2019).[193]
  • A study comparing tooth-use behaviors of early modern humans and Neanderthals is published by Krueger et al. (2019).[194]
  • A study on the archaeological sequence from Cova Foradà on the Mediterranean coast of Catalonia, representing the southernmost episode of Châtelperronian and Early Aurignacian documented to date in western Europe, is published by Morales et al. (2019).[195]
  • Evidence of a third introgression from an archaic human population in all Asian and Oceanian modern human populations, in addition to known Neanderthal and Denisovan introgressions, is presented by Mondal, Bertranpetit & Lao (2019).[196]
  • A study on the sequence and timing of early human migrations out of Africa and across the rest of the world, as inferred from evidence of introgression events preserved in the genomes of modern-day human populations, is published by Teixeira & Cooper (2019).[197]
  • A study on genetic differences between modern humans and archaic hominins is published by Kuhlwilm & Boeckx (2019).[198]
  • Colbran et al. (2019) present a method to identify divergent gene regulation between archaic hominin and anatomically modern human sequences, and study differences in gene regulatory architecture between the two groups.[199]
  • A study on the biological foundations of modern human endocranial shape, as indicated by paleoanthropological data from Neanderthal fossils and neuroimaging and genomic data from present-day humans, is published by Gunz et al. (2019).[200]
  • Neanderthal-like traits are reported in the occipital bones of recent Homo sapiens individuals from Australia by Nowaczewska et al. (2019), who evaluate the implications of their findings for the study of human evolution.[201]
  • Two fossilized human crania, of which one is dated to more than 170,000 years ago and has a Neanderthal-like morphology and the other one is dated to more than 210,000 years ago and presents a mixture of modern human and primitive features, are described from Apidima Cave (southern Greece) by Harvati et al. (2019).[202]
  • A CT-based virtual reconstruction of the Apidima 2 fossil cranium is presented by Bräuer et al. (2019).[203]
  • A study on the timing of the earliest occupation of Stelida archaeological site (Naxos, Greece) by Greece, reporting possible first evidence for Neanderthals in the region, is published by Carter et al. (2019), who evaluate the implications of this site for the knowledge of possible routes of hominin dispersal into Southeast Europe.[204]
  • A study on the evolutionary history of the modern human face is published by Lacruz et al. (2019).[205]
  • A study aiming to determine the advantages of heat treating of toolstone by early humans is published by Mraz et al. (2019).[206]
  • A study on the mitochondrial DNA of contemporary southern Africans is published by Chan et al. (2019), who interpret their findings as evidence of a southern African origin of anatomically modern humans and their sustained occupation of the homeland before their first migrations out of southern Africa, likely caused by regional climate shifts.[207]
  • A study on Pleistocene artifacts from Aduma (Middle Awash, Ethiopia) and their implications for the knowledge of the origin of complex projectiles is published by Sahle & Brooks (2019).[208]
  • A study on the phylogeography of human mtDNA L0 lineages in southern Africa and the rest of sub-Saharan Africa, and on its implications for the knowledge of early gene flow between continental regions in the Middle Stone Age, is published by Rito et al. (2019), who interpret their findings as indicative of human dispersal from southern to eastern Africa immediately preceding the out-of-Africa expansions.[209]
  • A Middle Stone Age lithic assemblage and human-accumulated animal remains, representing the oldest evidence of human settlement and adaptation to areas above 4000-meter elevation in Africa reported so far, are described from the Fincha Habera rock shelter (Bale Mountains, Ethiopia) by Ossendorf et al. (2019).[210]
  • A study on the hominin-bearing Plovers Lake site (South Africa), previously interpreted as a Middle Stone Age site, is published by Lombard et al. (2019), who reinterpret the sampled human and bovid remains as more likely to represent a Bantu-speaking Iron Age population and their cattle.[211]
  • Kumbani et al. (2019) describe possible sound-producing artefacts from Later Stone Age deposits in the southern Cape, South Africa.[212]
  • Humphrey et al. (2019) report on the burials of six infants from Later Stone Age levels at Taforalt (Morocco).[213]
  • Two assemblages of flint retouchers are described from the Middle Paleolithic sites Nesher Ramla (Israel) and Quneitra (Golan Heights) by Centi et al. (2019).[214]
  • Description of bird remains from the Qesem cave (Israel) dated to between 420 and 200 ka, and a study on their implications for the knowledge of interactions of birds and humans occupying the site, is published by Blasco et al. (2019).[215]
  • The earliest evidence for storage and delayed consumption of bone marrow by humans occupying the Qesem cave ~420 to 200 ka is presented by Blasco et al. (2019).[216]
  • A study investigating possible routes of human dispersals between Central and eastern Asia between Marine Isotope Stage 5 and Marine Isotope Stage 3 is published by Li et al. (2019).[217]
  • A study on the Tolbor-16 archaeological site located in the Northern Hangai Mountains, documenting the early occurrence of the Upper Paleolithic in Mongolia, is published by Zwyns et al. (2019).[218]
  • A study on the subsistence strategies of humans occupying the Les Cottés site (France) during the Middle to Upper Paleolithic transition is published by Rendu et al. (2019).[219]
  • Replacement of late Mousterian industries by Aurignacian ones at the site of Bajondillo Cave (Málaga, southern Spain) is reported by Cortés-Sánchez et al. (2019), who also evaluate when this event took place;[220] the study is subsequently criticized by de la Peña (2019) and Anderson, Reynolds & Teyssandier (2019).[221][222][223]
  • A study aiming to estimate hunter-gatherer population sizes and densities for the Aurignacian techno-complex in Europe is published by Schmidt & Zimmermann (2019).[224]
  • A study on the age of human and animal skeletal remains associated with the purported Aurignacian lithic assemblage from the Fontana Nuova site (Sicily, Italy) is published by Di Maida et al. (2019), who report that these remains date to Holocene rather than Aurignacian.[225]
  • A study on lithic pieces from the Uluzzian technocomplex (45–40 thousand years ago) at Grotta del Cavallo (Italy), interpreted as mechanically delivered projectile weapons produced by anatomically modern humans, is published by Sano et al. (2019).[226]
  • A study on the skeletal trauma of the human calvaria from Cioclovina (Romania), dated to approximately 33,000 calendar years before present, is published by Kranioti, Grigorescu & Harvati (2019), who interpret this finding as evidence of fatal interpersonal violence among early Upper Paleolithic modern humans of Europe.[227]
  • A study on the assemblage of ornaments from the Gravettian settlement of Poiana Cireșului (Romania), and on its implications for the knowledge of the mobility and connections of the Gravettian communities living in the area of present-day Romania with Mediterranean ones, is published by Nițu et al. (2019).[228]
  • A study on human mobility strategies during the Last Glacial Maximum in southern Italy, as indicated by strontium and stable isotope data from human remains from the Paglicci Cave, is published by Lugli et al. (2019).[229]
  • A study on the impact of environmental constraints on the size, distribution and structure of human populations living in Western Europe during the Last Glacial Maximum is published by Wren & Burke (2019).[230]
  • A study on human footprints, handprints and other traces from the Upper Paleolithic of the Bàsura Cave (Italy), and on their implications for the knowledge of the behavior and social structure of the human group inhabiting this cave, is published by Romano et al. (2019).[231]
  • A study aiming to determine whether changes over the past 38,000 years in European height predicted using ancient DNA from ancient Europeans are consistent with changes observed in skeletal remains from comparable populations is published by Cox et al. (2019).[232]
  • A study on the age of the Pleistocene skullcap found in the Salkhit Valley in northeast Mongolia is published by Devièse et al. (2019), who also reconstruct the complete mitochondrial genome of this specimen.[233]
  • A study on human skeletal remains from Pleistocene and Holocene sites in East Asia, and on their implications for inferring the history of the colonization of East Asia by anatomically modern humans, is published by Matsumura et al. (2019).[234]
  • A study on the evolution of the microblade technology in East Asia, as indicated by data from the Upper Paleolithic site Shizitan 29 (Shanxi, China), is published by Song et al. (2019).[235]
  • A study on the age Fa-Hien Lena archeological site (Sri Lanka) and on the faunal assemblage from this site is published by Wedage et al. (2019), who interpret their findings as evidence of specialized, sophisticated hunting of semi-arboreal and arboreal prey animals by humans living ca. 45,000 years ago.[236]
  • A study on a Late Pleistocene lithic assemblage from the Fa Hien Cave (Sri Lanka), representing the earliest known microlith assemblage from South Asia in firm association with evidence for the procurement of small to medium size arboreal prey and rainforest plants, is published by Wedage et al. (2019).[237]
  • A 15,000 years-old individual belonging to the species Homo sapiens, preserving an unusual number of primitive anatomical features of teeth, is described from the Dushan Cave (China) by Liao et al. (2019).[238]
  • A study on the late Pleistocene population history of northeastern Siberia, based on data from 34 ancient genomes, is published by Sikora et al. (2019).[239]
  • An elaborate rock art panel portraying hunting scenes, dated to at least 43.9 ka, is described from the limestone cave of Leang Bulu' Sipong 4 (Sulawesi, Indonesia) by Aubert et al. (2019).[240]
  • A study evaluating the probability of successful accidental crossing of early humans from Asia to Sahul through Wallacea is published by Bird et al. (2019).[241]
  • Late Pleistocene human remains, representing the first anatomically modern human remains recovered in Wallacea dated to this period, are described from two rockshelters from Alor Island (Indonesia) by Samper Carro et al. (2019).[242]
  • A study aiming to determine the resilience and minimum population size required to avoid extinction of first people colonizing Sahul is published by Bradshaw et al. (2019).[243]
  • A review of evidence for Pleistocene symbolic behaviour in Sahul, Sunda and Wallacea is published by Langley, Clarkson & Ulm (2019).[244]
  • A study aiming to determine the relationships between extinctions of megafauna, climatic changes and patterns of human appearance in south-eastern Australia over the last 120,000 years is published by Saltré et al. (2019).[245]
  • A study on the history of dispersal of people into and within the Americas, as indicated by data from Native American Y chromosomes, is published by Pinotti et al. (2019).[246]
  • A review of research advances from the preceding years concerning the settlement of the Americas by modern humans is published by Waters (2019).[247]
  • A study on the timing of the earliest occupation of the Cooper's Ferry archaeological site (Idaho, United States) by humans is published by Davis et al. (2019).[248]
  • A study on teeth and diet of Late Pleistocene woman "Naia" from the Yucatán Peninsula (Mexico) is published by Cucina, Atoche & Chatters (2019).[249]
  • A late Pleistocene human footprint is described from the Pilauco Bajo site (Chile) by Moreno et al. (2019).[250]
  • A study on stone tools from the Tzibte Yux and Mayahak Cab Pek rockshelters (Belize) and their implications for the knowledge of changes in stone tool technology in North America and tropical Central and South America during the late Pleistocene and early Holocene is published by Prufer et al. (2019).[251]
  • A study on the foraging behavior, landscape management, and resource utilization strategies of early tropical hunter-gatherers in southwestern Amazonia, as indicated by data from archaeological sites from three forest islands in the Llanos de Moxos, is published by Capriles et al. (2019).[252]
  • A study on the timing of the human settlement of Madagascar is published by Douglass et al. (2019).[253]
  • New genome-wide data from eight prehistoric humans, including 15,000-year-old Anatolian hunter-gatherer, is presented by Feldman et al. (2019).[254]
  • A study on a broken tool from the Hilazon Tachtit cave (Israel), interpreted as evidence for intentional breakage associated with ritual activity 12,000 years ago, is published by Dubreuil et al. (2019).[255]
  • A study on the processing sequence involved in the manufacture of a skull-cup and the manipulation of human bones from the Early Neolithic of Cueva de El Toro (Málaga, Spain), and on its implications for inferring the character of cannibalistic practices in Early Neolithic communities living in southern Iberia, is published by Santana et al. (2019).[256]
  • New genome-wide data from individuals from sites in the Iberian Peninsula ranging from ~13,000–6,000 calibrated years BP is presented by Villalba-Mouco et al. (2019), who report evidence of Iberian hunter-gatherers carrying dual ancestry from both Villabruna and the Magdalenian-related individuals, and of these two lineages of Late Pleistocene ancestry surviving into Holocene in the Iberian Peninsula.[257]
  • A study on the changes of the human population size in the Iberian Peninsula during the Pleistocene–Holocene transition is published by Fernández-López de Pablo et al. (2019).[258]
  • A study evaluating how hunter-gatherers living along the southern North Sea coast adapted to climatic and environmental changes at the beginning of the Holocene, based on data on variability of stone arrowheads and barbs from this area, is published by Crombé (2019).[259]
  • Mitochondrial genomes from two ~7000-year-old individuals from Takarkori rock shelter (Libya), representing the earliest and first genetic data for the Sahara region, are presented by Vai et al. (2019).[260]
  • A study on early human evolution in Africa, based on analysis of the genomic variation in a collection of whole-genome samples from 15 different African populations, is published by Lorente-Galdos et al. (2019).[261]
  • A study comparing North African genomes with extant and ancient genome data, and using this data to determine the demographic impact of Neolithization and later migration waves in North Africa, is published by Serra-Vidal et al. (2019).[262]
  • González-Fortes et al. (2019) sequence whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP, and report that one of them carried the sub-Saharan mitochondrial haplogroup L2a1, potentially representing the first record of this haplogroup in ancient human remains outside Africa reported so far, and interpret their findings as evidence of an early migration process from Africa into the Iberian Peninsula through a western route.[263]
  • Genome-wide data from 271 ancient Iberians living over the past 8000 years is presented by Olalde et al. (2019).[264]
  • A study on human migrations and admixture events in South and Central Asia, based on ancient DNA data from 523 individuals spanning the last 8000 years, is published by Narasimhan et al. (2019).[265]
  • A study on the history of Holocene peopling events of Chukotka and North America, based on genomic data from 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic, is published by Flegontov et al. (2019).[266]
  • A study on the impact of the transition from prehistoric foragers to contemporary societies on the human speech apparatus is published by Blasi et al. (2019).[267]
  • A study on human land use worldwide from 10,000 years before the present to 1850 CE, indicating that Earth was to a large extent transformed by human activity by 3000 years ago, is published by Stephens et al. (2019).[268]
  • Evidence for synchronous cyclical changes in monsoon climate, human activity and prehistoric cultural development in the area of northeast China throughout the Holocene is presented by Xu et al. (2019).[269]
  • Evidence of presence of managed aquaculture of the common carp by around 6000 BC is reported from the Early Neolithic Jiahu site (China) by Nakajima et al. (2019).[270]

References[edit]

  1. ^ D. Tab Rasmussen; Anthony R. Friscia; Mercedes Gutierrez; John Kappelman; Ellen R. Miller; Samuel Muteti; Dawn Reynoso; James B. Rossie; Terry L. Spell; Neil J. Tabor; Elizabeth Gierlowski-Kordesch; Bonnie F. Jacobs; Benson Kyongo; Mathew Macharwas; Francis Muchemi (2019). "Primitive Old World monkey from the earliest Miocene of Kenya and the evolution of cercopithecoid bilophodonty". Proceedings of the National Academy of Sciences of the United States of America. 116 (13): 6051–6056. Bibcode:2019PNAS..116.6051R. doi:10.1073/pnas.1815423116. PMC 6442627. PMID 30858323.
  2. ^ D. Tab Rasmussen; Anthony R. Friscia; Mercedes Gutierrez; John Kappelman; Ellen R. Miller; Samuel Muteti; Dawn Reynoso; James B. Rossie; Terry L. Spell; Neil J. Tabor; Elizabeth Gierlowski-Kordesch; Bonnie F. Jacobs; Benson Kyongo; Mathew Macharwas; Francis Muchemi (2019). "Correction for Rasmussen et al., Primitive Old World monkey from the earliest Miocene of Kenya and the evolution of cercopithecoid bilophodonty". Proceedings of the National Academy of Sciences of the United States of America. 116 (24): 12109. Bibcode:2019PNAS..11612109.. doi:10.1073/pnas.1907208116. PMC 6575170. PMID 31160447.
  3. ^ Olivier Chavasseau; Yaowalak Chaimanee; Stéphane Ducrocq; Vincent Lazzari; Phan Dong Pha; Mana Rugbumrung; Jérôme Surault; Dang Minh Tuan; Jean-Jacques Jaeger (2019). "A new primate from the late Eocene of Vietnam illuminates unexpected strepsirrhine diversity and evolution in Southeast Asia". Scientific Reports. 9 (1): Article number 19983. Bibcode:2019NatSR...919983C. doi:10.1038/s41598-019-56255-8. PMC 6934687. PMID 31882616.
  4. ^ Jean-Jacques Jaeger; Olivier Chavasseau; Vincent Lazzari; Aung Naing Soe; Chit Sein; Anne Le Maître; Hla Shwe; Yaowalak Chaimanee (2019). "New Eocene primate from Myanmar shares dental characters with African Eocene crown anthropoids". Nature Communications. 10 (1): Article number 3531. Bibcode:2019NatCo..10.3531J. doi:10.1038/s41467-019-11295-6. PMC 6684601. PMID 31388005.
  5. ^ Paul E. Morse; Stephen G.B. Chester; Doug M. Boyer; Thierry Smith; Richard Smith; Paul Gigase; Jonathan I. Bloch (2019). "New fossils, systematics, and biogeography of the oldest known crown primate Teilhardina from the earliest Eocene of Asia, Europe, and North America". Journal of Human Evolution. 128: 103–131. doi:10.1016/j.jhevol.2018.08.005. PMID 30497682. S2CID 54167483.
  6. ^ Laurent Pallas; Guillaume Daver; Hassane T. Mackaye; Andossa Likius; Patrick Vignaud; Franck Guy (2019). "A window into the early evolutionary history of Cercopithecidae: Late Miocene evidence from Chad, Central Africa". Journal of Human Evolution. 132: 61–79. doi:10.1016/j.jhevol.2019.03.013. PMID 31203852. S2CID 182860731.
  7. ^ Madelaine Böhme; Nikolai Spassov; Jochen Fuss; Adrian Tröscher; Andrew S. Deane; Jérôme Prieto; Uwe Kirscher; Thomas Lechner; David R. Begun (2019). "A new Miocene ape and locomotion in the ancestor of great apes and humans". Nature. 575 (7783): 489–493. Bibcode:2019Natur.575..489B. doi:10.1038/s41586-019-1731-0. PMID 31695194. S2CID 207888156.
  8. ^ Florent Détroit; Armand Salvador Mijares; Julien Corny; Guillaume Daver; Clément Zanolli; Eusebio Dizon; Emil Robles; Rainer Grün; Philip J. Piper (2019). "A new species of Homo from the Late Pleistocene of the Philippines" (PDF). Nature. 568 (7751): 181–186. Bibcode:2019Natur.568..181D. doi:10.1038/s41586-019-1067-9. PMID 30971845. S2CID 106411053.
  9. ^ Richard F. Kay; Jonathan M.G. Perry (2019). "New primates from the Río Santa Cruz and Río Bote (Early–Middle Miocene), Santa Cruz Province, Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 19 (2): 230–238. doi:10.5710/PEAPA.24.08.2019.289.
  10. ^ J. Michael Plavcan; Carol V. Ward; Richard F. Kay; Fredrick K. Manthi (2019). "A diminutive Pliocene guenon from Kanapoi, West Turkana, Kenya". Journal of Human Evolution. 135: Article 102623. doi:10.1016/j.jhevol.2019.05.011. PMID 31315809. S2CID 197541265.
  11. ^ Richard F. Kay; Lauren A. Gonzales; Wout Salenbien; Jean-Noël Martinez; Siobhán B. Cooke; Luis Angel Valdivia; Catherine Rigsby; Paul A. Baker (2019). "Parvimico materdei gen. et sp. nov.: A new platyrrhine from the Early Miocene of the Amazon Basin, Peru". Journal of Human Evolution. 134: Article 102628. doi:10.1016/j.jhevol.2019.05.016. PMID 31446974. S2CID 199632190.
  12. ^ Jeremiah E. Scott (2019). "Macroevolutionary effects on primate trophic evolution and their implications for reconstructing primate origins". Journal of Human Evolution. 133: 1–12. doi:10.1016/j.jhevol.2019.05.001. PMID 31358174. S2CID 195383711.
  13. ^ Gabriel S. Yapuncich; Henry J. Feng; Rachel H. Dunn; Erik R. Seiffert; Doug M. Boyer (2019). "Vertical support use and primate origins". Scientific Reports. 9 (1): Article number 12341. Bibcode:2019NatSR...912341Y. doi:10.1038/s41598-019-48651-x. PMC 6710261. PMID 31451739.
  14. ^ M. Melchionna; A. Mondanaro; C. Serio; S. Castiglione; M. Di Febbraro; L. Rook; J. A. F. Diniz-Filho; G. Manzi; A. Profico; G. Sansalone; P. Raia (2019). "Macroevolutionary trends of brain mass in Primates". Biological Journal of the Linnean Society. 129 (1): 14–25. doi:10.1093/biolinnean/blz161.
  15. ^ Brooke Erin Crowley; Laurie Rohde Godfrey (2019). "Strontium isotopes support small home ranges for extinct lemurs". Frontiers in Ecology and Evolution. 7: Article 490. doi:10.3389/fevo.2019.00490. S2CID 209415820.
  16. ^ Judit Marigó; Nicole Verrière; Marc Godinot (2019). "Systematic and locomotor diversification of the Adapis group (Primates, Adapiformes) in the late Eocene of the Quercy (Southwest France), revealed by humeral remains". Journal of Human Evolution. 126: 71–90. doi:10.1016/j.jhevol.2018.10.009. PMID 30583845. S2CID 58560825.
  17. ^ Ingrid K. Lundeen; E. Christopher Kirk (2019). "Internal nasal morphology of the Eocene primate Rooneyia viejaensis and extant Euarchonta: Using μCT scan data to understand and infer patterns of nasal fossa evolution in primates". Journal of Human Evolution. 132: 137–173. doi:10.1016/j.jhevol.2019.04.009. PMID 31203844. S2CID 189945901.
  18. ^ Daniele Silvestro; Marcelo F. Tejedor; Martha L. Serrano-Serrano; Oriane Loiseau; Victor Rossier; Jonathan Rolland; Alexander Zizka; Sebastian Höhna; Alexandre Antonelli; Nicolas Salamin (2019). "Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors". Systematic Biology. 68 (1): 78–92. doi:10.1093/sysbio/syy046. PMC 6292484. PMID 29931325.
  19. ^ Lauren Halenar-Price; Melissa Tallman (2019). "Investigating the effect of endocranial volume on cranial shape in platyrrhines and the relevance of this relationship to interpretations of the fossil record". American Journal of Physical Anthropology. 169 (1): 12–30. doi:10.1002/ajpa.23804. PMID 30802306. S2CID 73508335.
  20. ^ A. L. Rosenberger (2019). "Dolichocebus gaimanensis is not a stem platyrrhine". Folia Primatologica. 90 (6): 494–506. doi:10.1159/000500008. PMID 31238328. S2CID 195658845.
  21. ^ Xijun Ni; John J. Flynn; André R. Wyss; Chi Zhang (2019). "Cranial endocast of a stem platyrrhine primate and ancestral brain conditions in anthropoids". Science Advances. 5 (8): eaav7913. Bibcode:2019SciA....5.7913N. doi:10.1126/sciadv.aav7913. PMC 6703862. PMID 31457077.
  22. ^ Leandro Aristide; André Strauss; Lauren B. Halenar-Price; Emmanuel Gilissen; Francisco W. Cruz; Castor Cartelle; Alfred L. Rosenberger; Ricardo T. Lopes; Sergio F. dos Reis; S. Ivan Perez (2019). "Cranial and endocranial diversity in extant and fossil atelids (Platyrrhini: Atelidae): A geometric morphometric study". American Journal of Physical Anthropology. 169 (2): 322–331. doi:10.1002/ajpa.23837. PMID 30972753. S2CID 108294157.
  23. ^ Craig Wuthrich; Laura M. MacLatchy; Isaiah O. Nengo (2019). "Wrist morphology reveals substantial locomotor diversity among early catarrhines: an analysis of capitates from the early Miocene of Tinderet (Kenya)". Scientific Reports. 9 (1): Article number 3728. Bibcode:2019NatSR...9.3728W. doi:10.1038/s41598-019-39800-3. PMC 6403298. PMID 30842461.
  24. ^ Sergio Almécija; Melissa Tallman; Hesham M. Sallam; John G. Fleagle; Ashley S. Hammond; Erik R. Seiffert (2019). "Early anthropoid femora reveal divergent adaptive trajectories in catarrhine hind-limb evolution". Nature Communications. 10 (1): Article number 4778. Bibcode:2019NatCo..10.4778A. doi:10.1038/s41467-019-12742-0. PMC 6838095. PMID 31699998.
  25. ^ George D. Koufos (2019). "Late Turolian Mesopithecus (Mammalia: Cercopithecidae) from Axios Valley (Macedonia, Greece): earliest presence of M. monspessulanus in Europe". Comptes Rendus Palevol. 18 (8): 1057–1072. Bibcode:2019CRPal..18.1057K. doi:10.1016/j.crpv.2019.07.002.
  26. ^ Christian Roos; Maximilian Kothe; David M. Alba; Eric Delson; Dietmar Zinner (2019). "The radiation of macaques out of Africa: Evidence from mitogenome divergence times and the fossil record". Journal of Human Evolution. 133: 114–132. doi:10.1016/j.jhevol.2019.05.017. PMID 31358175. S2CID 198250029.
  27. ^ Florian Bouchet; Alexandre Ribéron; Jason L. Heaton; Jakobus Hoffman; Lunga Bam; Kudakwashe Jakata; Mirriam Tawane; Christophe Tenailleau; Bernhard Zipfel; Amélie Beaudet (2019). "The inner craniodental anatomy of the Papio specimen U.W. 88-886 from the Early Pleistocene site of Malapa, Gauteng, South Africa". Palaeontologia Africana. 53: 192–206. hdl:10539/26721.
  28. ^ Predrag Radović; Joshua Lindal; Zoran Marković; Sanja Alaburić; Mirjana Roksandic (2019). "First record of a fossil monkey (Primates, Cercopithecidae) from the Late Pliocene of Serbia". Journal of Human Evolution. 137: Article 102681. doi:10.1016/j.jhevol.2019.102681. PMID 31629290. S2CID 204799618.
  29. ^ Ashley S. Hammond; Kimberly K. Foecke; Jay Kelley (2019). "Hominoid anterior teeth from the late Oligocene site of Losodok, Kenya". Journal of Human Evolution. 128: 59–75. doi:10.1016/j.jhevol.2018.12.010. PMID 30825982. S2CID 73489242.
  30. ^ Laura MacLatchy; James Rossie; Alexandra Houssaye; Anthony J. Olejniczak; Tanya M. Smith (2019). "New hominoid fossils from Moroto II, Uganda and their bearing on the taxonomic and adaptive status of Morotopithecus bishopi". Journal of Human Evolution. 132: 227–246. doi:10.1016/j.jhevol.2019.03.008. PMID 31203849. S2CID 189944454.
  31. ^ Yutaka Kunimatsu; Masato Nakatsukasa; Daisuke Shimizu; Yoshihiko Nakano; Hidemi Ishida (2019). "Loss of the subarcuate fossa and the phylogeny of Nacholapithecus". Journal of Human Evolution. 131: 22–27. doi:10.1016/j.jhevol.2019.03.004. S2CID 133242176.
  32. ^ Guido Rocatti; S. Ivan Perez (2019). "The evolutionary radiation of hominids: a phylogenetic comparative study". Scientific Reports. 9 (1): Article number 15267. Bibcode:2019NatSR...915267R. doi:10.1038/s41598-019-51685-w. PMC 6813319. PMID 31649259.
  33. ^ Ian Towle (2019). "Tertiary dentine frequencies in extant great apes and fossil hominins". Open Quaternary. 5 (1): Article 2. doi:10.5334/oq.48 (inactive 2024-02-01).{{cite journal}}: CS1 maint: DOI inactive as of February 2024 (link)
  34. ^ Klara Komza; Matthew M. Skinner (2019). "First metatarsal trabecular bone structure in extant hominoids and Swartkrans hominins" (PDF). Journal of Human Evolution. 131: 1–21. doi:10.1016/j.jhevol.2019.03.003. PMID 31182196. S2CID 133548237.
  35. ^ Thomas R. Rein (2019). "A geometric morphometric examination of hominoid third metacarpal shape and its implications for inferring the precursor to terrestrial bipedalism". The Anatomical Record. 302 (6): 983–998. doi:10.1002/ar.23985. PMID 30332719. S2CID 52988587.
  36. ^ Thierra K. Nalley; Jeremiah E. Scott; Carol V. Ward; Zeresenay Alemseged (2019). "Comparative morphology and ontogeny of the thoracolumbar transition in great apes, humans, and fossil hominins". Journal of Human Evolution. 134: Article 102632. doi:10.1016/j.jhevol.2019.06.003. PMID 31446973. S2CID 201752613.
  37. ^ Roger S. Seymour; Vanya Bosiocic; Edward P. Snelling; Prince C. Chikezie; Qiaohui Hu; Thomas J. Nelson; Bernhard Zipfel; Case V. Miller (2019). "Cerebral blood flow rates in recent great apes are greater than in Australopithecus species that had equal or larger brains". Proceedings of the Royal Society B: Biological Sciences. 286 (1915): Article ID 20192208. doi:10.1098/rspb.2019.2208. PMC 6892054. PMID 31718497.
  38. ^ Marta Pina; David M. Alba; Salvador Moyà-Solà; Sergio Almécija (2019). "Femoral neck cortical bone distribution of dryopithecin apes and the evolution of hominid locomotion". Journal of Human Evolution. 136: Article 102651. doi:10.1016/j.jhevol.2019.102651. PMID 31542562. S2CID 202732913.
  39. ^ J. Agustí; O. Oms; P. Piñero; G. Chochisvili; M. Bukhsianidze; D. Lordkipanidze (2019). "Late survival of dryopithecine hominoids in Southern Caucasus". Journal of Human Evolution. 138: Article 102690. doi:10.1016/j.jhevol.2019.102690. PMID 31759255. S2CID 208254285.
  40. ^ Melania Ioannidou; George D. Koufos; Louis de Bonis; Katerina Harvati (2019). "A new three-dimensional geometric morphometrics analysis of the Ouranopithecus macedoniensis cranium (Late Miocene, Central Macedonia, Greece)". American Journal of Physical Anthropology. 170 (2): 295–307. doi:10.1002/ajpa.23900. PMID 31339568. S2CID 198194561.
  41. ^ Yaowalak Chaimanee; Vincent Lazzari; Kamol Chaivanich; Jean-Jacques Jaeger (2019). "First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters". Journal of Human Evolution. 134: Article 102636. doi:10.1016/j.jhevol.2019.06.007. PMID 31446972. S2CID 201750949.
  42. ^ Christopher C. Gilbert; Ramesh K. Sehgal; Kelsey D. Pugh; Christopher J. Campisano; Evangeline May; Biren A. Patel; Ningthoujam Premjit Singh; Rajeev Patnaik (2019). "New Sivapithecus specimen from Ramnagar (Jammu and Kashmir), India and a taxonomic revision of Ramnagar hominoids". Journal of Human Evolution. 135: Article 102665. doi:10.1016/j.jhevol.2019.102665. S2CID 203359844.
  43. ^ Frido Welker; Jazmín Ramos-Madrigal; Martin Kuhlwilm; Wei Liao; Petra Gutenbrunner; Marc de Manuel; Diana Samodova; Meaghan Mackie; Morten E. Allentoft; Anne-Marie Bacon; Matthew J. Collins; Jürgen Cox; Carles Lalueza-Fox; Jesper V. Olsen; Fabrice Demeter; Wei Wang; Tomas Marques-Bonet; Enrico Cappellini (2019). "Enamel proteome shows that Gigantopithecus was an early diverging pongine". Nature. 576 (7786): 262–265. Bibcode:2019Natur.576..262W. doi:10.1038/s41586-019-1728-8. PMC 6908745. PMID 31723270.
  44. ^ Arnaud Filoux; Athiwat Wattanapituksakul (2019). "The Late Pleistocene Orangutan from Tham Prakai Phet: New discoveries". Annales de Paléontologie. 105 (4): 287–293. Bibcode:2019AnPal.105..287F. doi:10.1016/j.annpal.2019.03.004. S2CID 146265985.
  45. ^ Clément Zanolli; Ottmar Kullmer; Jay Kelley; Anne-Marie Bacon; Fabrice Demeter; Jean Dumoncel; Luca Fiorenza; Frederick E. Grine; Jean-Jacques Hublin; Anh Tuan Nguyen; Thi Mai Huong Nguyen; Lei Pan; Burkhard Schillinger; Friedemann Schrenk; Matthew M. Skinner; Xueping Ji; Roberto Macchiarelli (2019). "Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia" (PDF). Nature Ecology & Evolution. 3 (5): 755–764. Bibcode:2019NatEE...3..755Z. doi:10.1038/s41559-019-0860-z. PMID 30962558. S2CID 102353734.
  46. ^ Alejandra Ortiz; Shara E. Bailey; Miguel Delgado; Clément Zanolli; Fabrice Demeter; Anne-Marie Bacon; Thi M. H. Nguyen; Anh T. Nguyen; Yingqi Zhang; Terry Harrison; Jean-Jacques Hublin; Matthew M. Skinner (2019). "A distinguishing feature of Pongo upper molars and its implications for the taxonomic identification of isolated hominid teeth from the Pleistocene of Asia" (PDF). American Journal of Physical Anthropology. 170 (4): 595–612. doi:10.1002/ajpa.23928. PMID 31651996. S2CID 204884261.
  47. ^ Tanya M. Smith; Paul Tafforeau; Joane Pouech; David R. Begun (2019). "Enamel thickness and dental development in Rudapithecus hungaricus". Journal of Human Evolution. 136: Article 102649. doi:10.1016/j.jhevol.2019.102649. PMID 31542560. S2CID 202732379.
  48. ^ Carol V. Ward; Ashley S. Hammond; J. Michael Plavcan; David R. Begun (2019). "A late Miocene hominid partial pelvis from Hungary". Journal of Human Evolution. 136: Article 102645. doi:10.1016/j.jhevol.2019.102645. PMID 31537304. S2CID 202701691.
  49. ^ Philipp Gunz; Stephanie Kozakowski; Simon Neubauer; Adeline Le Cabec; Ottmar Kullmer; Stefano Benazzi; Jean-Jacques Hublin; David R. Begun (2019). "Skull reconstruction of the late Miocene ape Rudapithecus hungaricus from Rudabánya, Hungary". Journal of Human Evolution. 138: Article 102687. doi:10.1016/j.jhevol.2019.102687. PMID 31759256. S2CID 208254258.
  50. ^ Ashley S. Hammond; Lorenzo Rook; Alisha D. Anaya; Elisabetta Cioppi; Loïc Costeur; Salvador Moyà-Solà; Sergio Almécija (2019). "Insights into the lower torso in late Miocene hominoid Oreopithecus bambolii". Proceedings of the National Academy of Sciences of the United States of America. 117 (1): 278–284. doi:10.1073/pnas.1911896116. PMC 6955348. PMID 31871170.
  51. ^ Martin Kuhlwilm; Sojung Han; Vitor C. Sousa; Laurent Excoffier; Tomas Marques-Bonet (2019). "Ancient admixture from an extinct ape lineage into bonobos". Nature Ecology & Evolution. 3 (6): 957–965. Bibcode:2019NatEE...3..957K. doi:10.1038/s41559-019-0881-7. PMID 31036897. S2CID 139107044.
  52. ^ Kimberly A. Plomp; Keith Dobney; Darlene A. Weston; Una Strand Viðarsdóttir; Mark Collard (2019). "3D shape analyses of extant primate and fossil hominin vertebrae support the ancestral shape hypothesis for intervertebral disc herniation". BMC Evolutionary Biology. 19 (1): Article number 226. Bibcode:2019BMCEE..19..226P. doi:10.1186/s12862-019-1550-9. PMC 6916256. PMID 31842740.
  53. ^ Caroline Parins-Fukuchi; Elliot Greiner; Laura M. MacLatchy; Daniel C. Fisher (2019). "Phylogeny, ancestors, and anagenesis in the hominin fossil record". Paleobiology. 45 (2): 378–393. Bibcode:2019Pbio...45..378P. doi:10.1017/pab.2019.12. S2CID 196659329.
  54. ^ Jeremy DeSilva; Ellison McNutt; Julien Benoit; Bernhard Zipfel (2019). "One small step: A review of Plio-Pleistocene hominin foot evolution". American Journal of Physical Anthropology. 168 (S67): 63–140. doi:10.1002/ajpa.23750. PMID 30575015.
  55. ^ J. Tyler Faith; John Rowan; Andrew Du (2019). "Early hominins evolved within non-analog ecosystems". Proceedings of the National Academy of Sciences of the United States of America. 116 (43): 21478–21483. Bibcode:2019PNAS..11621478F. doi:10.1073/pnas.1909284116. PMC 6815188. PMID 31591246.
  56. ^ Tom Weihmann (2020). "Species richness and composition are not sufficient for determining the functionality of ancient ecosystems". Proceedings of the National Academy of Sciences of the United States of America. 117 (7): 3368–3369. Bibcode:2020PNAS..117.3368W. doi:10.1073/pnas.1920054117. PMC 7035617. PMID 32019877.
  57. ^ J. Tyler Faith; John Rowan; Andrew Du (2020). "Reply to Weihmann: Fifty gazelles do not equal an elephant, and other ecological misunderstandings". Proceedings of the National Academy of Sciences of the United States of America. 117 (7): 3370–3371. Bibcode:2020PNAS..117.3370F. doi:10.1073/pnas.1920565117. PMC 7035609. PMID 32019886.
  58. ^ Josephine C.A. Joordens; Craig S. Feibel; Hubert B. Vonhof; Anne S. Schulp; Dick Kroon (2019). "Relevance of the eastern African coastal forest for early hominin biogeography". Journal of Human Evolution. 131: 176–202. doi:10.1016/j.jhevol.2019.03.012. hdl:20.500.11820/6c1ee960-79ba-45df-9e12-3350c768a497. PMID 31182201.
  59. ^ Larissa Swedell; Thomas Plummer (2019). "Social evolution in Plio-Pleistocene hominins: Insights from hamadryas baboons and paleoecology". Journal of Human Evolution. 137: Article 102667. doi:10.1016/j.jhevol.2019.102667. PMID 31629289. S2CID 204799593.
  60. ^ Clément Zanolli; Fereidoun Biglari; Marjan Mashkour; Kamyar Abdi; Hervé Monchot; Karyne Debue; Arnaud Mazurier; Priscilla Bayle; Mona Le Luyer; Hélène Rougier; Erik Trinkaus; Roberto Macchiarelli (2019). "A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar" (PDF). Journal of Human Evolution. 135: Article 102643. doi:10.1016/j.jhevol.2019.102643. PMID 31421316. S2CID 201057857.
  61. ^ René Bobe; Susana Carvalho (2019). "Hominin diversity and high environmental variability in the Okote Member, Koobi Fora Formation, Kenya". Journal of Human Evolution. 126: 91–105. doi:10.1016/j.jhevol.2018.10.012. PMID 30583846. S2CID 58641952.
  62. ^ Alessandro Riga; Tommaso Mori; Travis Rayne Pickering; Jacopo Moggi-Cecchi; Colin G. Menter (2019). "Ages-at-death distribution of the early Pleistocene hominin fossil assemblage from Drimolen (South Africa)". American Journal of Physical Anthropology. 168 (3): 632–636. doi:10.1002/ajpa.23771. PMID 30613947. S2CID 58664067.
  63. ^ Geoff M. Smith; Karen Ruebens; Sabine Gaudzinski-Windheuser; Teresa E. Steele (2019). "Subsistence strategies throughout the African Middle Pleistocene: Faunal evidence for behavioral change and continuity across the Earlier to Middle Stone Age transition". Journal of Human Evolution. 127: 1–20. doi:10.1016/j.jhevol.2018.11.011. PMID 30777352. S2CID 73469724.
  64. ^ Mirosław Masojć; Ahmed Nassr; Ju Yong Kim; Joanna Krupa-Kurzynowska; Young Kwan Sohn; Marcin Szmit; Jin Cheul Kim; Ji Sung Kim; Han Woo Choi; Małgorzata Wieczorek; Axel Timmermann (2019). "Saharan green corridors and Middle Pleistocene hominin dispersals across the Eastern Desert, Sudan". Journal of Human Evolution. 130: 141–150. doi:10.1016/j.jhevol.2019.01.004. PMID 31010540. S2CID 128361376.
  65. ^ Aurélien Mounier; Marta Mirazón Lahr (2019). "Deciphering African late middle Pleistocene hominin diversity and the origin of our species". Nature Communications. 10 (1): Article number 3406. Bibcode:2019NatCo..10.3406M. doi:10.1038/s41467-019-11213-w. PMC 6736881. PMID 31506422.
  66. ^ Scott W. Simpson; Naomi E. Levin; Jay Quade; Michael J. Rogers; Sileshi Semaw (2019). "Ardipithecus ramidus postcrania from the Gona Project area, Afar Regional State, Ethiopia". Journal of Human Evolution. 129: 1–45. doi:10.1016/j.jhevol.2018.12.005. PMID 30904038. S2CID 85500710.
  67. ^ Carrie S. Mongle; David S. Strait; Frederick E. Grine (2019). "Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin". Journal of Human Evolution. 131: 28–39. doi:10.1016/j.jhevol.2019.03.006. PMID 31182205. S2CID 132592284.
  68. ^ Thomas Cody Prang (2019). "The African ape-like foot of Ardipithecus ramidus and its implications for the origin of bipedalism". eLife. 8: e44433. doi:10.7554/eLife.44433. PMC 6491036. PMID 31038121.
  69. ^ Robyn Pickering; Andy I. R. Herries; Jon D. Woodhead; John C. Hellstrom; Helen E. Green; Bence Paul; Terrence Ritzman; David S. Strait; Benjamin J. Schoville; Phillip J. Hancox (2019). "U–Pb-dated flowstones restrict South African early hominin record to dry climate phases". Nature. 565 (7738): 226–229. Bibcode:2019Natur.565..226P. doi:10.1038/s41586-018-0711-0. PMID 30464348. S2CID 53713996.
  70. ^ Philip Hopley; Pieter Vermeesch; Randall Parrish; Alfred Latham (2021). "Clusters of flowstone ages are not supported by statistical evidence". Nature. 594 (7863): E10. Bibcode:2021Natur.594E..10H. doi:10.1038/s41586-021-03586-0. PMID 34135516. S2CID 235462309.
  71. ^ Robyn Pickering; Andy I. R. Herries; Jon D. Woodhead; John C. Hellstrom; Helen E. Green; Bence Paul; Terrence Ritzman; David S. Strait; Benjamin J. Schoville; Phillip J. Hancox (2021). "Reply to: Clusters of flowstone ages are not supported by statistical evidence". Nature. 594 (7863): E11. Bibcode:2021Natur.594E..11P. doi:10.1038/s41586-021-03587-z. ISSN 0028-0836. PMID 34135517. S2CID 235460324.
  72. ^ Théo Tacail; Jeremy E. Martin; Florent Arnaud-Godet; J. Francis Thackeray; Thure E. Cerling; José Braga; Vincent Balter (2019). "Calcium isotopic patterns in enamel reflect different nursing behaviors among South African early hominins". Science Advances. 5 (8): eaax3250. Bibcode:2019SciA....5.3250T. doi:10.1126/sciadv.aax3250. PMC 6713495. PMID 31489378.
  73. ^ Michael R. Lague; Habiba Chirchir; David J. Green; Emma Mbua; John W.K. Harris; David R. Braun; Nicole L. Griffin; Brian G. Richmond (2019). "Cross-sectional properties of the humeral diaphysis of Paranthropus boisei: Implications for upper limb function". Journal of Human Evolution. 126: 51–70. doi:10.1016/j.jhevol.2018.05.002. PMID 30583844. S2CID 58660397.
  74. ^ Julia Aramendi; Mari Carmen Arriaza; José Yravedra; Miguel Ángel Maté-González; María Cruz Ortega; Lloyd A. Courtenay; Diego González-Aguilera; Agness Gidna; Audax Mabulla; Enrique Baquedano; Manuel Domínguez Rodrigo (2019). "Who ate OH80 (Olduvai Gorge, Tanzania)? A geometric-morphometric analysis of surface bone modifications of a Paranthropus boisei skeleton". Quaternary International. 517: 118–130. Bibcode:2019QuInt.517..118A. doi:10.1016/j.quaint.2019.05.029. hdl:10366/155561. S2CID 181391867.
  75. ^ Ian Towle; Joel D. Irish (2019). "A probable genetic origin for pitting enamel hypoplasia on the molars of Paranthropus robustus" (PDF). Journal of Human Evolution. 129: 54–61. doi:10.1016/j.jhevol.2019.01.002. PMID 30904040. S2CID 85502058.
  76. ^ Amélie Beaudet (2019). "The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa". American Journal of Physical Anthropology. 170 (3): 439–446. doi:10.1002/ajpa.23901. hdl:2263/74123. PMID 31290572. S2CID 195872212.
  77. ^ Marine Cazenave; José Braga; Anna Oettlé; Travis Rayne Pickering; Jason L. Heaton; Masato Nakatsukasa; J. Francis Thackeray; Frikkie de Beer; Jakobus Hoffman; Jean Dumoncel; Roberto Macchiarelli (2019). "Cortical bone distribution in the femoral neck of Paranthropus robustus" (PDF). Journal of Human Evolution. 135: Article 102666. doi:10.1016/j.jhevol.2019.102666. PMID 31499455. S2CID 202406283.
  78. ^ Amélie Beaudet; Ronald J. Clarke; Edwin J. de Jager; Laurent Bruxelles; Kristian J. Carlson; Robin Crompton; Frikkie de Beer; Jelle Dhaene; Jason L. Heaton; Kudakwashe Jakata; Tea Jashashvili; Kathleen Kuman; Juliet McClymont; Travis R. Pickering; Dominic Stratford (2019). "The endocast of StW 573 ("Little Foot") and hominin brain evolution". Journal of Human Evolution. 126: 112–123. doi:10.1016/j.jhevol.2018.11.009. PMID 30583840. S2CID 58583649.
  79. ^ Amélie Beaudet; Ronald J. Clarke; Laurent Bruxelles; Kristian J. Carlson; Robin Crompton; Frikkie de Beer; Jelle Dhaene; Jason L. Heaton; Kudakwashe Jakata; Tea Jashashvili; Kathleen Kuman; Juliet McClymont; Travis R. Pickering; Dominic Stratford (2019). "The bony labyrinth of StW 573 ("Little Foot"): Implications for early hominin evolution and paleobiology". Journal of Human Evolution. 127: 67–80. doi:10.1016/j.jhevol.2018.12.002. PMID 30777359. S2CID 73466797.
  80. ^ Jason L. Heaton; Travis Rayne Pickering; Kristian J. Carlson; Robin H. Crompton; Tea Jashashvili; Amélie Beaudet; Laurent Bruxelles; Kathleen Kuman; Andrea J. Heile; Dominic Stratford; Ronald J. Clarke (2019). "The long limb bones of the StW 573 Australopithecus skeleton from Sterkfontein Member 2: Descriptions and proportions". Journal of Human Evolution. 133: 167–197. doi:10.1016/j.jhevol.2019.05.015. PMID 31358179. S2CID 198307810.
  81. ^ Ronald J. Clarke; Kathleen Kuman (2019). "The skull of StW 573, a 3.67 Ma Australopithecus prometheus skeleton from Sterkfontein Caves, South Africa". Journal of Human Evolution. 134: Article 102634. doi:10.1016/j.jhevol.2019.06.005. PMID 31446970. S2CID 201209318.
  82. ^ Rhonda L. Quinn (2019). "Isotopic equifinality and rethinking the diet of Australopithecus anamensis". American Journal of Physical Anthropology. 169 (3): 403–421. doi:10.1002/ajpa.23846. PMID 31049941. S2CID 143432666.
  83. ^ Marc R. Meyer; Scott A. Williams (2019). "Earliest axial fossils from the genus Australopithecus". Journal of Human Evolution. 132: 189–214. doi:10.1016/j.jhevol.2019.05.004. PMID 31203847. S2CID 189943736.
  84. ^ Yohannes Haile-Selassie; Stephanie M. Melillo; Antonino Vazzana; Stefano Benazzi; Timothy M. Ryan (2019). "A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia". Nature. 573 (7773): 214–219. Bibcode:2019Natur.573..214H. doi:10.1038/s41586-019-1513-8. hdl:11585/697577. PMID 31462770. S2CID 201656331.
  85. ^ Beverly Z. Saylor; Luis Gibert; Alan Deino; Mulugeta Alene; Naomi E. Levin; Stephanie M. Melillo; Mark D. Peaple; Sarah J. Feakins; Benjamin Bourel; Doris Barboni; Alice Novello; Florence Sylvestre; Stanley A. Mertzman; Yohannes Haile-Selassie (2019). "Age and context of mid-Pliocene hominin cranium from Woranso-Mille, Ethiopia" (PDF). Nature. 573 (7773): 220–224. Bibcode:2019Natur.573..220S. doi:10.1038/s41586-019-1514-7. PMID 31462773. S2CID 201651705.
  86. ^ Lee R. Berger; John Hawks (2019). "Australopithecus prometheus is a nomen nudum". American Journal of Physical Anthropology. 168 (2): 383–387. doi:10.1002/ajpa.23743. PMID 30552667. S2CID 54582416.
  87. ^ Ronald J. Clarke (2019). "Australopithecus prometheus was validly named on MLD 1". American Journal of Physical Anthropology. 170 (4): 479–481. doi:10.1002/ajpa.23892. PMID 31268174. S2CID 195787227.
  88. ^ John Hawks; Lee R. Berger (2019). "Reply to Clarke, "Australopithecus prometheus was validly named on MLD 1"". American Journal of Physical Anthropology. 170 (4): 482–483. doi:10.1002/ajpa.23927. PMID 31580474. S2CID 203651966.
  89. ^ Zachary Cofran (2019). "Brain size growth in Australopithecus". Journal of Human Evolution. 130: 72–82. doi:10.1016/j.jhevol.2019.02.006. PMID 31010545. S2CID 109409684.
  90. ^ Yohannes Haile-Selassie; Timothy M. Ryan (2019). "Comparative description and taxonomy of new hominin juvenile mandibles from the Pliocene of Woranso-Mille (Central Afar, Ethiopia)". Journal of Human Evolution. 132: 15–31. doi:10.1016/j.jhevol.2019.04.005. PMID 31203845. S2CID 155702614.
  91. ^ Andrew Du; John Rowan; Steve C. Wang; Bernard A. Wood; Zeresenay Alemseged (2019). "Statistical estimates of hominin origination and extinction dates: A case study examining the Australopithecus anamensisafarensis lineage". Journal of Human Evolution. 138: Article 102688. doi:10.1016/j.jhevol.2019.102688. PMID 31759257. S2CID 208254124.
  92. ^ Frederick E. Grine (2019). "The alpha taxonomy of Australopithecus at Sterkfontein: The postcranial evidence". Comptes Rendus Palevol. 18 (3): 335–352. Bibcode:2019CRPal..18..335G. doi:10.1016/j.crpv.2019.01.004.
  93. ^ Renaud Joannes-Boyau; Justin W. Adams; Christine Austin; Manish Arora; Ian Moffat; Andy I. R. Herries; Matthew P. Tonge; Stefano Benazzi; Alistair R. Evans; Ottmar Kullmer; Stephen Wroe; Anthony Dosseto; Luca Fiorenza (2019). "Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress". Nature. 572 (7767): 112–115. doi:10.1038/s41586-019-1370-5. PMC 7359858. PMID 31308534.
  94. ^ Andrew Du; Zeresenay Alemseged (2019). "Temporal evidence shows Australopithecus sediba is unlikely to be the ancestor of Homo". Science Advances. 5 (5): eaav9038. Bibcode:2019SciA....5.9038D. doi:10.1126/sciadv.aav9038. PMC 6506247. PMID 31086821.
  95. ^ Antoine Balzeau (2019). "Temporal bone pneumatization: The case of Australopithecus sediba and its implications for the definition of the genus Homo". Journal of Human Evolution. 133: 108–113. doi:10.1016/j.jhevol.2019.06.001. S2CID 198240024.
  96. ^ Natalie M. Laudicina; Frankee Rodriguez; Jeremy M. DeSilva (2019). "Reconstructing birth in Australopithecus sediba". PLOS ONE. 14 (9): e0221871. Bibcode:2019PLoSO..1421871L. doi:10.1371/journal.pone.0221871. PMC 6750590. PMID 31532788.
  97. ^ David R. Braun; Vera Aldeias; Will Archer; J Ramon Arrowsmith; Niguss Baraki; Christopher J. Campisano; Alan L. Deino; Erin N. DiMaggio; Guillaume Dupont-Nivet; Blade Engda; David A. Feary; Dominique I. Garello; Zenash Kerfelew; Shannon P. McPherron; David B. Patterson; Jonathan S. Reeves; Jessica C. Thompson; Kaye E. Reed (2019). "Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity". Proceedings of the National Academy of Sciences of the United States of America. 116 (24): 11712–11717. Bibcode:2019PNAS..11611712B. doi:10.1073/pnas.1820177116. PMC 6575601. PMID 31160451.
  98. ^ Yonatan Sahle; Tegenu Gossa (2019). "More data needed for claims about the earliest Oldowan artifacts". Proceedings of the National Academy of Sciences of the United States of America. 116 (41): 20259–20260. Bibcode:2019PNAS..11620259S. doi:10.1073/pnas.1911658116. PMC 6789553. PMID 31530728.
  99. ^ David R. Braun; Vera Aldeias; Will Archer; J Ramon Arrowsmith; Niguss Baraki; Christopher J. Campisano; Alan L. Deino; Erin N. DiMaggio; Guillaume Dupont-Nivet; Blade Engda; David A. Feary; Dominique I. Garello; Zenash Kerfelew; Shannon P. McPherron; David B. Patterson; Jonathan S. Reeves; Jessica C. Thompson; Kaye E. Reed (2019). "Reply to Sahle and Gossa: Technology and geochronology at the earliest known Oldowan site at Ledi-Geraru, Ethiopia". Proceedings of the National Academy of Sciences of the United States of America. 116 (41): 20261–20262. Bibcode:2019PNAS..11620261B. doi:10.1073/pnas.1911952116. PMC 6789629. PMID 31530722.
  100. ^ Frederick E. Grine; Meave G. Leakey; Patrick N. Gathago; Frank H. Brown; Carrie S. Mongle; Deming Yang; William L. Jungers; Louise N. Leakey (2019). "Complete permanent mandibular dentition of early Homo from the upper Burgi Member of the Koobi Fora Formation, Ileret, Kenya". Journal of Human Evolution. 131: 152–175. doi:10.1016/j.jhevol.2019.03.017. PMID 31182200. S2CID 146038075.
  101. ^ David B. Patterson; David R. Braun; Kayla Allen; W. Andrew Barr; Anna K. Behrensmeyer; Maryse Biernat; Sophie B. Lehmann; Tom Maddox; Fredrick K. Manthi; Stephen R. Merritt; Sarah E. Morris; Kaedan O'Brien; Jonathan S. Reeves; Bernard A. Wood; René Bobe (2019). "Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo". Nature Ecology & Evolution. 3 (7): 1048–1056. Bibcode:2019NatEE...3.1048P. doi:10.1038/s41559-019-0916-0. PMID 31209290. S2CID 189927301.
  102. ^ Kornelius Kupczik; Lucas K. Delezene; Matthew M. Skinner (2019). "Mandibular molar root and pulp cavity morphology in Homo naledi and other Plio-Pleistocene hominins" (PDF). Journal of Human Evolution. 130: 83–95. doi:10.1016/j.jhevol.2019.03.007. PMID 31010546. S2CID 109058795.
  103. ^ Darryl J. de Ruiter; Myra F. Laird; Marina Elliott; Peter Schmid; Juliet Brophy; John Hawks; Lee R. Berger (2019). "Homo naledi cranial remains from the Lesedi chamber of the Rising Star Cave system, South Africa". Journal of Human Evolution. 132: 1–14. doi:10.1016/j.jhevol.2019.03.019. PMID 31203841. S2CID 149725781.
  104. ^ Lukas Friedl; Alex G. Claxton; Christopher S. Walker; Steven E. Churchill; Trenton W. Holliday; John Hawks; Lee R. Berger; Jeremy M. DeSilva; Damiano Marchi (2019). "Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa)". Journal of Human Evolution. 133: 61–77. doi:10.1016/j.jhevol.2019.06.002. hdl:11568/994404. PMID 31358184. S2CID 109808282.
  105. ^ Christopher S. Walker; Zachary D. Cofran; Mark Grabowski; Damiano Marchi; Rebecca W. Cook; Steven E. Churchill; Kimberleigh A. Tommy; Zachary Throckmorton; Ann H. Ross; John Hawks; Gabriel S. Yapuncich; Adam P. Van Arsdale; Frederika I. Rentzeperis; Lee R. Berger; Jeremy M. DeSilva (2019). "Morphology of the Homo naledi femora from Lesedi" (PDF). American Journal of Physical Anthropology. 170 (1): 5–23. doi:10.1002/ajpa.23877. PMID 31228254. S2CID 195259770.
  106. ^ Elen M. Feuerriegel; Jean-Luc Voisin; Steven E. Churchill; Martin Haeusler; Sandra Mathews; Peter Schmid; John Hawks; Lee R. Berger (2019). "Upper limb fossils of Homo naledi from the Lesedi Chamber, Rising Star System, South Africa" (PDF). PaleoAnthropology. 2019: 311–349. doi:10.4207/PA.2019.ART134 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  107. ^ Shara E. Bailey; Juliet K. Brophy; Jacopo Moggi-Cecchi; Lucas K. Delezene (2019). "The deciduous dentition of Homo naledi: A comparative study". Journal of Human Evolution. 136: Article 102655. doi:10.1016/j.jhevol.2019.102655. PMID 31546194. S2CID 202747779.
  108. ^ D. Marchi; C.M. Harper; H. Chirchir; C.B. Ruff (2019). "Relative fibular strength and locomotor behavior in KNM-WT 15000 and OH 35". Journal of Human Evolution. 131: 48–60. doi:10.1016/j.jhevol.2019.02.005. hdl:11568/994382. PMID 31182206. S2CID 145846013.
  109. ^ Brian Villmoare; Kevin G. Hatala; William Jungers (2019). "Sexual dimorphism in Homo erectus inferred from 1.5 Ma footprints near Ileret, Kenya". Scientific Reports. 9 (1): Article number 7687. Bibcode:2019NatSR...9.7687V. doi:10.1038/s41598-019-44060-2. PMC 6531427. PMID 31118467.
  110. ^ Deborah L. Cunningham; Melinda V. Rogers; Daniel J. Wescott; Robert C. McCarthy (2019). "Reevaluation of the body mass estimate for the KNM-ER 5428 Homo erectus talus". American Journal of Physical Anthropology. 170 (1): 148–155. doi:10.1002/ajpa.23898. PMID 31268179. S2CID 195787424.
  111. ^ Tommaso Mori; Katerina Harvati (2019). "Basicranial ontogeny comparison in Pan troglodytes and Homo sapiens and its use for developmental stage definition of KNM-ER 42700". American Journal of Physical Anthropology. 170 (4): 579–594. doi:10.1002/ajpa.23926. PMID 31633198.
  112. ^ Sarah Hlubik; Russell Cutts; David R. Braun; Francesco Berna; Craig S. Feibel; John W.K. Harris (2019). "Hominin fire use in the Okote member at Koobi Fora, Kenya: New evidence for the old debate". Journal of Human Evolution. 133: 214–229. doi:10.1016/j.jhevol.2019.01.010. PMID 31358181. S2CID 198984388.
  113. ^ Giancarlo Scardia; Fabio Parenti; Daniel P. Miggins; Axel Gerdes; Astolfo G.M. Araujo; Walter A. Neves (2019). "Chronologic constraints on hominin dispersal outside Africa since 2.48 Ma from the Zarqa Valley, Jordan". Quaternary Science Reviews. 219: 1–19. Bibcode:2019QSRv..219....1S. doi:10.1016/j.quascirev.2019.06.007. S2CID 199101999.
  114. ^ G. Philip Rightmire; Ann Margvelashvili; David Lordkipanidze (2019). "Variation among the Dmanisi hominins: Multiple taxa or one species?". American Journal of Physical Anthropology. 168 (3): 481–495. doi:10.1002/ajpa.23759. PMID 30578552.
  115. ^ Hanneke J.M. Meijer; Francesco d'Errico; Alain Queffelec; Iwan Kurniawan; Erick Setiabudi; Indra Sutisna; Adam Brumm; Gerrit D. van den Bergh (2019). "Characterization of bone surface modifications on an Early to Middle Pleistocene bird assemblage from Mata Menge (Flores, Indonesia) using multifocus and confocal microscopy". Palaeogeography, Palaeoclimatology, Palaeoecology. 529: 1–11. Bibcode:2019PPP...529....1M. doi:10.1016/j.palaeo.2019.05.025. hdl:10072/387049.
  116. ^ José Alexandre F. Diniz-Filho; Lucas Jardim; Thiago F. Rangel; Phillip B. Holden; Neil R. Edwards; Joaquín Hortal; Ana M. C. Santos; Pasquale Raia (2019). "Quantitative genetics of body size evolution on islands: an individual-based simulation approach". Biology Letters. 15 (10): Article ID 20190481. doi:10.1098/rsbl.2019.0481. PMC 6832192. PMID 31594495.
  117. ^ Yun Guo; Chengkai Sun; Lan Luo; Linlin Yang; Fei Han; Hua Tu; Zhongping Lai; Hongchen Jiang; Christopher J. Bae; Guanjun Shen; Darryl Granger (2019). "26Al/10Be burial dating of the Middle Pleistocene Yiyuan hominin fossil site, Shandong Province, Northern China". Scientific Reports. 9 (1): Article number 6961. Bibcode:2019NatSR...9.6961G. doi:10.1038/s41598-019-43401-5. PMC 6502808. PMID 31061440.
  118. ^ Song Xing; Paul Tafforeau; Mackie O'Hara; Mario Modesto-Mata; Laura Martín-Francés; María Martinón-Torres; Limin Zhang; Lynne A. Schepartz; José María Bermúdez de Castro; Debbie Guatelli-Steinberg (2019). "First systematic assessment of dental growth and development in an archaic hominin (genus Homo) from East Asia". Science Advances. 5 (1): eaau0930. Bibcode:2019SciA....5..930X. doi:10.1126/sciadv.aau0930. PMC 6357757. PMID 30746445.
  119. ^ Lewis, Dyani (2023-09-18). "A new human species? Mystery surrounds 300,000-year-old fossil". Nature. doi:10.1038/d41586-023-02924-8. PMID 37723275. S2CID 262053793.
  120. ^ Xiu-Jie Wu; Shu-Wen Pei; Yan-Jun Cai; Hao-Wen Tong; Qiang Li; Zhe Dong; Jin-Chao Sheng; Ze-Tian Jin; Dong-Dong Ma; Song Xing; Xiao-Li Li; Xing Cheng; Hai Cheng; Ignacio de la Torre; R. Lawrence Edwards; Xi-Cheng Gong; Zhi-Sheng An; Erik Trinkaus; Wu Liu (2019). "Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation". Proceedings of the National Academy of Sciences of the United States of America. 116 (20): 9820–9824. Bibcode:2019PNAS..116.9820W. doi:10.1073/pnas.1902396116. PMC 6525539. PMID 31036653.
  121. ^ Song Xing; María Martinón-Torres; José María Bermúdez de Castro (2019). "Late Middle Pleistocene hominin teeth from Tongzi, southern China". Journal of Human Evolution. 130: 96–108. doi:10.1016/j.jhevol.2019.03.001. PMID 31010547. S2CID 128362495.
  122. ^ Lei Pan; Jean Dumoncel; Arnaud Mazurier; Clément Zanolli (2019). "Structural analysis of premolar roots in Middle Pleistocene hominins from China" (PDF). Journal of Human Evolution. 136: Article 102669. doi:10.1016/j.jhevol.2019.102669. PMID 31614276. S2CID 204739716.
  123. ^ M. Patrocinio Espigares; Paul Palmqvist; Antonio Guerra-Merchán; Sergio Ros-Montoya; José Manuel García-Aguilar; Guillermo Rodríguez-Gómez; Francisco J. Serrano; Bienvenido Martínez-Navarro (2019). "The earliest cut marks of Europe: a discussion on hominin subsistence patterns in the Orce sites (Baza basin, SE Spain)". Scientific Reports. 9 (1): Article number 15408. Bibcode:2019NatSR...915408E. doi:10.1038/s41598-019-51957-5. PMC 6817892. PMID 31659231.
  124. ^ José María Bermúdez de Castro; María Martinón-Torres; Marina Martínez de Pinillos; Cecilia García-Campos; Mario Modesto-Mata; Laura Martín-Francés; Juan Luis Arsuaga (2019). "Metric and morphological comparison between the Arago (France) and Atapuerca-Sima de los Huesos (Spain) dental samples, and the origin of Neanderthals". Quaternary Science Reviews. 217: 45–61. Bibcode:2019QSRv..217...45B. doi:10.1016/j.quascirev.2018.04.003. S2CID 134788769.
  125. ^ Eva María Poza-Rey; Aida Gómez-Robles; Juan Luis Arsuaga (2019). "Brain size and organization in the Middle Pleistocene hominins from Sima de los Huesos. Inferences from endocranial variation". Journal of Human Evolution. 129: 67–90. doi:10.1016/j.jhevol.2019.01.006. PMID 30904042. S2CID 85496424.
  126. ^ Martina Demuro; Lee J. Arnold; Arantza Aranburu; Nohemi Sala; Juan-Luis Arsuaga (2019). "New bracketing luminescence ages constrain the Sima de los Huesos hominin fossils (Atapuerca, Spain) to MIS 12". Journal of Human Evolution. 131: 76–95. doi:10.1016/j.jhevol.2018.12.003. PMID 31182208. S2CID 146051807.
  127. ^ Mercedes Conde-Valverde; Ignacio Martínez; Rolf M. Quam; Alejandro Bonmatí; Carlos Lorenzo; Alex D. Velez; Carolina Martínez-Calvo; Juan Luis Arsuaga (2019). "The cochlea of the Sima de los Huesos hominins (Sierra de Atapuerca, Spain): New insights into cochlear evolution in the genus Homo". Journal of Human Evolution. 136: Article 102641. doi:10.1016/j.jhevol.2019.102641. PMID 31569005. S2CID 203622602.
  128. ^ Yul Altolaguirre; José M. Postigo-Mijarra; Eduardo Barrón; José S. Carrión; Suzanne A.G. Leroy; Angela A. Bruch (2019). "An environmental scenario for the earliest hominins in the Iberian Peninsula: Early Pleistocene palaeovegetation and palaeoclimate". Review of Palaeobotany and Palynology. 260: 51–64. Bibcode:2019RPaPa.260...51A. doi:10.1016/j.revpalbo.2018.10.008. S2CID 134333102.
  129. ^ Alastair J. M. Key; Christopher J. Dunmore; Mary W. Marzke (2019). "The unexpected importance of the fifth digit during stone tool production". Scientific Reports. 9 (1): Article number 16724. Bibcode:2019NatSR...916724K. doi:10.1038/s41598-019-53332-w. PMC 6853985. PMID 31723201.
  130. ^ Alex Brittingham; Michael T. Hren; Gideon Hartman; Keith N. Wilkinson; Carolina Mallol; Boris Gasparyan; Daniel S. Adler (2019). "Geochemical evidence for the control of fire by Middle Palaeolithic hominins". Scientific Reports. 9 (1): Article number 15368. Bibcode:2019NatSR...915368B. doi:10.1038/s41598-019-51433-0. PMC 6814844. PMID 31653870.
  131. ^ Stefanie Stelzer; Simon Neubauer; Jean-Jacques Hublin; Fred Spoor; Philipp Gunz (2019). "Morphological trends in arcade shape and size in Middle Pleistocene Homo". American Journal of Physical Anthropology. 168 (1): 70–91. doi:10.1002/ajpa.23721. PMID 30351445. S2CID 53036784.
  132. ^ Annemieke Milks; David Parker; Matt Pope (2019). "External ballistics of Pleistocene hand-thrown spears: experimental performance data and implications for human evolution". Scientific Reports. 9 (1): Article number 820. Bibcode:2019NatSR...9..820M. doi:10.1038/s41598-018-37904-w. PMC 6347593. PMID 30683877.
  133. ^ María Martinón-Torres; José María Bermúdez de Castro; Marina Martínez de Pinillos; Mario Modesto-Mata; Song Xing; Laura Martín-Francés; Cecilia García-Campos; Xiujie Wu; Wu Liu (2019). "New permanent teeth from Gran Dolina-TD6 (Sierra de Atapuerca). The bearing of Homo antecessor on the evolutionary scenario of Early and Middle Pleistocene Europe". Journal of Human Evolution. 127: 93–117. doi:10.1016/j.jhevol.2018.12.001. PMID 30777361. S2CID 73484393.
  134. ^ Jesús Rodríguez; Zorrilla-Revilla Guillermo; Mateos Ana (2019). "Does optimal foraging theory explain the behavior of the oldest human cannibals?". Journal of Human Evolution. 131: 228–239. doi:10.1016/j.jhevol.2019.03.010. PMID 31182203. S2CID 149855232.
  135. ^ Razika Chelli Cheheb; Marta Arzarello; Julie Arnaud; Claudio Berto; Isabel Cáceres; Sandro Caracausi; Francesco Colopi; Sara Daffara; Guido Montanari Canini; Rosa Huguet; Theodora Karambatsou; Benedetto Sala; Maurizio Zambaldi; Gabriele L. F. Berruti (2019). "Human behavior and Homo-mammal interactions at the first European peopling: new evidence from the Pirro Nord site (Apricena, Southern Italy)". The Science of Nature. 106 (5–6): Article 16. Bibcode:2019SciNa.106...16C. doi:10.1007/s00114-019-1610-4. PMID 31011827. S2CID 126572324.
  136. ^ Gaël Becam; Tony Chevalier (2019). "Neandertal features of the deciduous and permanent teeth from Portel-Ouest Cave (Ariège, France)". American Journal of Physical Anthropology. 168 (1): 45–69. doi:10.1002/ajpa.23719. PMID 30462354. S2CID 53945792.
  137. ^ Yue Hu; Ben Marwick; Jia-Fu Zhang; Xue Rui; Ya-Mei Hou; Jian-Ping Yue; Wen-Rong Chen; Wei-Wen Huang; Bo Li (2019). "Late Middle Pleistocene Levallois stone-tool technology in southwest China". Nature. 565 (7737): 82–85. Bibcode:2019Natur.565...82H. doi:10.1038/s41586-018-0710-1. PMID 30455423. S2CID 53873016.
  138. ^ Feng Li; Yinghua Li; Xing Gao; Steven L. Kuhn; Eric Boëda; John W. Olsen (2019). "A refutation of reported Levallois technology from Guanyindong Cave in South China". National Science Review. 6 (6): 1094–1096. doi:10.1093/nsr/nwz115. PMC 8291448. PMID 34691983.
  139. ^ Yue Hu; Ben Marwick; Jia-Fu Zhang; Xue Rui; Ya-Mei Hou; Wen-Rong Chen; Wei-Wen Huang; Bo Li (2019). "Robust technological readings identify integrated structures typical of the Levallois concept in Guanyindong Cave, South China". National Science Review. 6 (6): 1096–1099. doi:10.1093/nsr/nwz192. PMC 8291575. PMID 34691984.
  140. ^ Yan Rizal; Kira E. Westaway; Yahdi Zaim; Gerrit D. van den Bergh; E. Arthur Bettis III; Michael J. Morwood; O. Frank Huffman; Rainer Grün; Renaud Joannes-Boyau; Richard M. Bailey; Sidarto; Michael C. Westaway; Iwan Kurniawan; Mark W. Moore; Michael Storey; Fachroel Aziz; Suminto; Jian-xin Zhao; Aswan; Maija E. Sipola; Roy Larick; John-Paul Zonneveld; Robert Scott; Shelby Putt; Russell L. Ciochon (2019). "Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago". Nature. 577 (7790): 381–385. doi:10.1038/s41586-019-1863-2. PMID 31853068. S2CID 209410644.
  141. ^ Jacobs, Zenobia; Li, Bo; Shunkov, Michael V.; Kozlikin, Maxim B.; Bolikhovskaya, Nataliya S.; Agadjanian, Alexander K.; Uliyanov, Vladimir A.; Vasiliev, Sergei K.; O'Gorman, Kieran; Derevianko, Anatoly P.; Roberts, Richard G. (2019). "Timing of archaic hominin occupation of Denisova Cave in southern Siberia". Nature. 565 (7741): 594–599. Bibcode:2019Natur.565..594J. doi:10.1038/s41586-018-0843-2. PMID 30700870. S2CID 59525956.
  142. ^ Katerina Douka; Viviane Slon; Zenobia Jacobs; Christopher Bronk Ramsey; Michael V. Shunkov; Anatoly P. Derevianko; Fabrizio Mafessoni; Maxim B. Kozlikin; Bo Li; Rainer Grün; Daniel Comeskey; Thibaut Devièse; Samantha Brown; Bence Viola; Leslie Kinsley; Michael Buckley; Matthias Meyer; Richard G. Roberts; Svante Pääbo; Janet Kelso; Tom Higham (2019). "Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave". Nature. 565 (7741): 640–644. Bibcode:2019Natur.565..640D. doi:10.1038/s41586-018-0870-z. PMID 30700871. S2CID 59525455.
  143. ^ E. Andrew Bennett; Isabelle Crevecoeur; Bence Viola; Anatoly P. Derevianko; Michael V. Shunkov; Thierry Grange; Bruno Maureille; Eva-Maria Geigl (2019). "Morphology of the Denisovan phalanx closer to modern humans than to Neanderthals". Science Advances. 5 (9): eaaw3950. Bibcode:2019SciA....5.3950B. doi:10.1126/sciadv.aaw3950. PMC 6726440. PMID 31517046.
  144. ^ Fahu Chen; Frido Welker; Chuan-Chou Shen; Shara E. Bailey; Inga Bergmann; Simon Davis; Huan Xia; Hui Wang; Roman Fischer; Sarah E. Freidline; Tsai-Luen Yu; Matthew M. Skinner; Stefanie Stelzer; Guangrong Dong; Qiaomei Fu; Guanghui Dong; Jian Wang; Dongju Zhang; Jean-Jacques Hublin (2019). "A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau" (PDF). Nature. 569 (7756): 409–412. Bibcode:2019Natur.569..409C. doi:10.1038/s41586-019-1139-x. PMID 31043746. S2CID 141503768.
  145. ^ Shara E. Bailey; Jean-Jacques Hublin; Susan C. Antón (2019). "Rare dental trait provides morphological evidence of archaic introgression in Asian fossil record". Proceedings of the National Academy of Sciences of the United States of America. 116 (30): 14806–14807. Bibcode:2019PNAS..11614806B. doi:10.1073/pnas.1907557116. PMC 6660730. PMID 31285349.
  146. ^ G. Richard Scott; Joel D. Irish; María Martinón-Torres (2020). "A more comprehensive view of the Denisovan 3-rooted lower second molar from Xiahe". Proceedings of the National Academy of Sciences of the United States of America. 117 (1): 37–38. Bibcode:2020PNAS..117...37S. doi:10.1073/pnas.1918004116. PMC 6955347. PMID 31848254.
  147. ^ Shara E. Bailey; Kornelius Kupczik; Jean-Jacques Hublin; Susan C. Antón (2020). "Reply to Scott et al: A closer look at the 3-rooted lower second molar of an archaic human from Xiahe". Proceedings of the National Academy of Sciences of the United States of America. 117 (1): 39–40. Bibcode:2020PNAS..117...39B. doi:10.1073/pnas.1918959116. PMC 6955358. PMID 31848253.
  148. ^ David Gokhman; Nadav Mishol; Marc de Manuel; David de Juan; Jonathan Shuqrun; Eran Meshorer; Tomas Marques-Bonet; Yoel Rak; Liran Carmel (2019). "Reconstructing Denisovan anatomy using DNA methylation maps". Cell. 179 (1): 180–192.e10. doi:10.1016/j.cell.2019.08.035. PMID 31539495. S2CID 202676502.
  149. ^ Mike W. Morley; Paul Goldberg; Vladimir A. Uliyanov; Maxim B. Kozlikin; Michael V. Shunkov; Anatoly P. Derevianko; Zenobia Jacobs; Richard G. Roberts (2019). "Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia)". Scientific Reports. 9 (1): Article number 13785. Bibcode:2019NatSR...913785M. doi:10.1038/s41598-019-49930-3. PMC 6763451. PMID 31558742.
  150. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA". Nature. 544 (7651): 479–483. Bibcode:2017Natur.544..479H. doi:10.1038/nature22065. PMID 28447646. S2CID 205255425.
  151. ^ Patrick M. Ferrell (2019). "The Cerutti Mastodon Site reinterpreted with reference to freeway construction plans and methods". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 5 (1): 1–7. doi:10.1080/20555563.2019.1589663. S2CID 167172979.
  152. ^ Mark Q. Sutton; Jennifer Parkinson; Martin D. Rosen (2019). "Observations regarding the Cerutti mastodon". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 5 (1): 8–15. doi:10.1080/20555563.2019.1589409. S2CID 155596679.
  153. ^ Erik Trinkaus; Mathilde Samsel; Sébastien Villotte (2019). "External auditory exostoses among western Eurasian late Middle and Late Pleistocene humans". PLOS ONE. 14 (8): e0220464. Bibcode:2019PLoSO..1420464T. doi:10.1371/journal.pone.0220464. PMC 6693685. PMID 31412053.
  154. ^ Pierre Antoine; Marie-Hélène Moncel; Pierre Voinchet; Jean-Luc Locht; Daniel Amselem; David Hérisson; Arnaud Hurel; Jean-Jacques Bahain (2019). "The earliest evidence of Acheulian occupation in Northwest Europe and the rediscovery of the Moulin Quignon site, Somme valley, France". Scientific Reports. 9 (1): Article number 13091. Bibcode:2019NatSR...913091A. doi:10.1038/s41598-019-49400-w. PMC 6739401. PMID 31511611.
  155. ^ Marie-Hélène Moncel; Carmen Santagata; Alison Pereira; Sébastien Nomade; Jean-Jacques Bahain; Pierre Voinchet; Marcello Piperno (2019). "A biface production older than 600 ka ago at Notarchirico (Southern Italy) contribution to understanding early Acheulean cognition and skills in Europe". PLOS ONE. 14 (9): e0218591. Bibcode:2019PLoSO..1418591M. doi:10.1371/journal.pone.0218591. PMC 6762110. PMID 31557192.
  156. ^ Antonio Rosas; Markus Bastir; Jose Antonio Alarcón (2019). "Tempo and mode in the Neandertal evolutionary lineage: A structuralist approach to mandible variation". Quaternary Science Reviews. 217: 62–75. Bibcode:2019QSRv..217...62R. doi:10.1016/j.quascirev.2019.02.025. S2CID 133679751.
  157. ^ Stéphane Peyrégne; Viviane Slon; Fabrizio Mafessoni; Cesare de Filippo; Mateja Hajdinjak; Sarah Nagel; Birgit Nickel; Elena Essel; Adeline Le Cabec; Kurt Wehrberger; Nicholas J. Conard; Claus Joachim Kind; Cosimo Posth; Johannes Krause; Grégory Abrams; Dominique Bonjean; Kévin Di Modica; Michel Toussaint; Janet Kelso; Matthias Meyer; Svante Pääbo; Kay Prüfer (2019). "Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe". Science Advances. 5 (6): eaaw5873. Bibcode:2019SciA....5.5873P. doi:10.1126/sciadv.aaw5873. PMC 6594762. PMID 31249872.
  158. ^ Fernando A. Villanea; Joshua G. Schraiber (2019). "Multiple episodes of interbreeding between Neanderthal and modern humans". Nature Ecology & Evolution. 3 (1): 39–44. doi:10.1038/s41559-018-0735-8. PMC 6309227. PMID 30478305.
  159. ^ Penny Spikins; Andy Needham; Barry Wright; Calvin Dytham; Maurizio Gatta; Gail Hitchens (2019). "Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare". Quaternary Science Reviews. 217: 98–118. Bibcode:2019QSRv..217...98S. doi:10.1016/j.quascirev.2018.08.011.
  160. ^ J.R. Stewart; O. García-Rodríguez; M.V. Knul; L. Sewell; H. Montgomery; M.G. Thomas; Y. Diekmann (2019). "Palaeoecological and genetic evidence for Neanderthal power locomotion as an adaptation to a woodland environment" (PDF). Quaternary Science Reviews. 217: 310–315. Bibcode:2019QSRv..217..310S. doi:10.1016/j.quascirev.2018.12.023. S2CID 133980969.
  161. ^ L. Ríos; T. L. Kivell; C. Lalueza-Fox; A. Estalrrich; A. García-Tabernero; R. Huguet; Y. Quintino; M. de la Rasilla; A. Rosas (2019). "Skeletal anomalies in the Neandertal family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction". Scientific Reports. 9 (1): Article number 1697. Bibcode:2019NatSR...9.1697R. doi:10.1038/s41598-019-38571-1. PMC 6368597. PMID 30737446.
  162. ^ Anthony Santino Pagano; Samuel Márquez; Jeffrey T. Laitman (2019). "Reconstructing the Neanderthal Eustachian tube: new insights on disease susceptibility, fitness cost, and extinction". The Anatomical Record. 302 (12): 2109–2125. doi:10.1002/ar.24248. PMID 31472033.
  163. ^ Klervia Jaouen; Michael P. Richards; Adeline Le Cabec; Frido Welker; William Rendu; Jean-Jacques Hublin; Marie Soressi; Sahra Talamo (2019). "Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores". Proceedings of the National Academy of Sciences of the United States of America. 116 (11): 4928–4933. Bibcode:2019PNAS..116.4928J. doi:10.1073/pnas.1814087116. PMC 6421459. PMID 30782806.
  164. ^ Martin Haeusler; Erik Trinkaus; Cinzia Fornai; Jonas Müller; Noémie Bonneau; Thomas Boeni; Nakita Frater (2019). "Morphology, pathology, and the vertebral posture of the La Chapelle-aux-Saints Neandertal". Proceedings of the National Academy of Sciences of the United States of America. 116 (11): 4923–4927. Bibcode:2019PNAS..116.4923H. doi:10.1073/pnas.1820745116. PMC 6421410. PMID 30804177.
  165. ^ Marie-Hélène Moncel; Paul Fernandes; Malte Willmes; Hannah James; Rainer Grün (2019). "Rocks, teeth, and tools: New insights into early Neanderthal mobility strategies in South-Eastern France from lithic reconstructions and strontium isotope analysis". PLOS ONE. 14 (4): e0214925. Bibcode:2019PLoSO..1414925M. doi:10.1371/journal.pone.0214925. PMC 6447223. PMID 30943255.
  166. ^ Asier Gómez-Olivencia; Trenton Holliday; Stéphane Madelaine; Christine Couture-Veschambre; Bruno Maureille (2019). "The costal skeleton of the Regourdou 1 Neandertal". Journal of Human Evolution. 130: 151–171. doi:10.1016/j.jhevol.2017.12.005. PMID 29496322. S2CID 3672644.
  167. ^ Luca Fiorenza; Stefano Benazzi; Ottmar Kullmer; Giulia Zampirolo; Arnaud Mazurier; Clément Zanolli; Roberto Macchiarelli (2019). "Dental macrowear and cortical bone distribution of the Neanderthal mandible from Regourdou (Dordogne, Southwestern France)". Journal of Human Evolution. 132: 174–188. doi:10.1016/j.jhevol.2019.05.005. hdl:11585/688340. PMID 31203846. S2CID 189943580.
  168. ^ Anna Degioanni; Christophe Bonenfant; Sandrine Cabut; Silvana Condemi (2019). "Living on the edge: Was demographic weakness the cause of Neanderthal demise?". PLOS ONE. 14 (5): e0216742. Bibcode:2019PLoSO..1416742D. doi:10.1371/journal.pone.0216742. PMC 6541251. PMID 31141515.
  169. ^ Martin Petr; Svante Pääbo; Janet Kelso; Benjamin Vernot (2019). "Limits of long-term selection against Neandertal introgression". Proceedings of the National Academy of Sciences of the United States of America. 116 (5): 1639–1644. Bibcode:2019PNAS..116.1639P. doi:10.1073/pnas.1814338116. PMC 6358679. PMID 30647110.
  170. ^ Deven N. Vyas; Connie J. Mulligan (2019). "Analyses of Neanderthal introgression suggest that Levantine and southern Arabian populations have a shared population history". American Journal of Physical Anthropology. 169 (2): 227–239. doi:10.1002/ajpa.23818. PMID 30889271.
  171. ^ Christoph Wißing; Hélène Rougier; Chris Baumann; Alexander Comeyne; Isabelle Crevecoeur; Dorothée G. Drucker; Sabine Gaudzinski-Windheuser; Mietje Germonpré; Asier Gómez-Olivencia; Johannes Krause; Tim Matthies; Yuichi I. Naito; Cosimo Posth; Patrick Semal; Martin Street; Hervé Bocherens (2019). "Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe". Scientific Reports. 9 (1): Article number 4433. Bibcode:2019NatSR...9.4433W. doi:10.1038/s41598-019-41033-3. PMC 6418202. PMID 30872714.
  172. ^ Y. Fernández-Jalvo; P. Andrews (2019). "Spy cave (Belgium) Neanderthals (36,000y BP). Taphonomy and peri-mortem traumas of Spy I and Spy II: Murder or accident". Quaternary Science Reviews. 217: 119–129. Bibcode:2019QSRv..217..119F. doi:10.1016/j.quascirev.2019.03.028. S2CID 149770889.
  173. ^ Frank L'Engle Williams; Christopher W. Schmidt; Jessica L. Droke; John C. Willman; Patrick Semal; Gaël Becam; Marie-Antoinette de Lumley (2019). "Dietary reconstruction of Spy I using dental microwear texture analysis". Comptes Rendus Palevol. 18 (8): 1083–1094. Bibcode:2019CRPal..18.1083W. doi:10.1016/j.crpv.2019.06.004.
  174. ^ Predrag Radović; Joshua Lindal; Dušan Mihailović; Mirjana Roksandic (2019). "The first Neanderthal specimen from Serbia: Maxillary first molar from the Late Pleistocene of Pešturina Cave". Journal of Human Evolution. 131: 139–151. doi:10.1016/j.jhevol.2019.03.018. PMID 31182199. S2CID 145899241.
  175. ^ Lucia Leierer; Margarita Jambrina-Enríquez; Antonio V. Herrera-Herrera; Rory Connolly; Cristo M. Hernández; Bertila Galván; Carolina Mallol (2019). "Insights into the timing, intensity and natural setting of Neanderthal occupation from the geoarchaeological study of combustion structures: A micromorphological and biomarker investigation of El Salt, unit Xb, Alcoy, Spain". PLOS ONE. 14 (4): e0214955. Bibcode:2019PLoSO..1414955L. doi:10.1371/journal.pone.0214955. PMC 6481795. PMID 31017917.
  176. ^ Carlos Sánchez-Hernández; Lionel Gourichon; Eric Pubert; William Rendu; Ramón Montes; Florent Rivals (2019). "Combined dental wear and cementum analyses in ungulates reveal the seasonality of Neanderthal occupations in Covalejos Cave (Northern Iberia)". Scientific Reports. 9 (1): Article number 14335. Bibcode:2019NatSR...914335S. doi:10.1038/s41598-019-50719-7. PMC 6778078. PMID 31586143.
  177. ^ Ilaria Degano; Sylvain Soriano; Paola Villa; Luca Pollarolo; Jeannette J. Lucejko; Zenobia Jacobs; Katerina Douka; Silvana Vitagliano; Carlo Tozzi (2019). "Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant'Agostino caves". PLOS ONE. 14 (6): e0213473. Bibcode:2019PLoSO..1413473D. doi:10.1371/journal.pone.0213473. PMC 6586293. PMID 31220106.
  178. ^ Africa Pitarch Martí; Francesco d'Errico; Alain Turq; Eric Lebraud; Emmanuel Discamps; Brad Gravina (2019). "Provenance, modification and use of manganese-rich rocks at Le Moustier (Dordogne, France)". PLOS ONE. 14 (7): e0218568. Bibcode:2019PLoSO..1418568P. doi:10.1371/journal.pone.0218568. PMC 6636720. PMID 31314755.
  179. ^ Ravid Ekshtain; Ariel Malinsky-Buller; Noam Greenbaum; Netta Mitki; Mareike C. Stahlschmidt; Ruth Shahack-Gross; Nadav Nir; Naomi Porat; Daniella E. Bar-Yosef Mayer; Reuven Yeshurun; Ella Been; Yoel Rak; Nuha Agha; Lena Brailovsky; Masha Krakovsky; Polina Spivak; Micka Ullman; Ariel Vered; Omry Barzilai; Erella Hovers (2019). "Persistent Neanderthal occupation of the open-air site of 'Ein Qashish, Israel". PLOS ONE. 14 (6): e0215668. Bibcode:2019PLoSO..1415668E. doi:10.1371/journal.pone.0215668. PMC 6594589. PMID 31242180.
  180. ^ Stewart Finlayson; Geraldine Finlayson; Francisco Giles Guzman; Clive Finlayson (2019). "Neanderthals and the cult of the Sun Bird". Quaternary Science Reviews. 217: 217–224. Bibcode:2019QSRv..217..217F. doi:10.1016/j.quascirev.2019.04.010. S2CID 149949579.
  181. ^ A. Rodríguez-Hidalgo; J. I. Morales; A. Cebrià; L. A. Courtenay; J. L. Fernández-Marchena; G. García-Argudo; J. Marín; P. Saladié; M. Soto; J.-M. Tejero; J.-M. Fullola (2019). "The Châtelperronian Neanderthals of Cova Foradada (Calafell, Spain) used imperial eagle phalanges for symbolic purposes". Science Advances. 5 (11): eaax1984. Bibcode:2019SciA....5.1984R. doi:10.1126/sciadv.aax1984. PMC 6824858. PMID 31701003.
  182. ^ Gabriele Terlato; Alessandra Livraghi; Matteo Romandini; Marco Peresani (2019). "Large bovids on the Neanderthal menu: Exploitation of Bison priscus and Bos primigenius in northeastern Italy". Journal of Archaeological Science: Reports. 25: 129–143. Bibcode:2019JArSR..25..129T. doi:10.1016/j.jasrep.2019.04.006. S2CID 146317863.
  183. ^ Sara E. Rhodes; Britt M. Starkovich; Nicholas J. Conard (2019). "Did climate determine Late Pleistocene settlement dynamics in the Ach Valley, SW Germany?". PLOS ONE. 14 (5): e0215172. Bibcode:2019PLoSO..1415172R. doi:10.1371/journal.pone.0215172. PMC 6497257. PMID 31048924.
  184. ^ Alban R. Defleur; Emmanuel Desclaux (2019). "Impact of the last interglacial climate change on ecosystems and Neanderthals behavior at Baume Moula-Guercy, Ardèche, France". Journal of Archaeological Science. 104: 114–124. Bibcode:2019JArSc.104..114D. doi:10.1016/j.jas.2019.01.002. S2CID 133992282.
  185. ^ Lukas Bokelmann; Mateja Hajdinjak; Stéphane Peyrégne; Selina Brace; Elena Essel; Cesare de Filippo; Isabelle Glocke; Steffi Grote; Fabrizio Mafessoni; Sarah Nagel; Janet Kelso; Kay Prüfer; Benjamin Vernot; Ian Barnes; Svante Pääbo; Matthias Meyer; Chris Stringer (2019). "A genetic analysis of the Gibraltar Neanderthals". Proceedings of the National Academy of Sciences of the United States of America. 116 (31): 15610–15615. Bibcode:2019PNAS..11615610B. doi:10.1073/pnas.1903984116. PMC 6681707. PMID 31308224.
  186. ^ Patrick Schmidt; Matthias Blessing; Maxime Rageot; Radu Iovita; Johannes Pfleging; Klaus G. Nickel; Ludovic Righetti; Claudio Tennie (2019). "Birch tar production does not prove Neanderthal behavioral complexity". Proceedings of the National Academy of Sciences of the United States of America. 116 (36): 17707–17711. Bibcode:2019PNAS..11617707S. doi:10.1073/pnas.1911137116. PMC 6731756. PMID 31427508.
  187. ^ Marcel J. L. Th. Niekus; Paul R. B. Kozowyk; Geeske H. J. Langejans; Dominique Ngan-Tillard; Henk van Keulen; Johannes van der Plicht; Kim M. Cohen; Willy van Wingerden; Bertil van Os; Bjørn I. Smit; Luc W. S. W. Amkreutz; Lykke Johansen; Annemieke Verbaas; Gerrit L. Dusseldorp (2019). "Middle Paleolithic complex technology and a Neandertal tar-backed tool from the Dutch North Sea". Proceedings of the National Academy of Sciences of the United States of America. 116 (44): 22081–22087. Bibcode:2019PNAS..11622081N. doi:10.1073/pnas.1907828116. PMC 6825292. PMID 31636186.
  188. ^ Patrick Schmidt; Maxime Rageot; Matthias Blessing; Claudio Tennie (2020). "The Zandmotor data do not resolve the question whether Middle Paleolithic birch tar making was complex or not". Proceedings of the National Academy of Sciences of the United States of America. 117 (9): 4456–4457. Bibcode:2020PNAS..117.4456S. doi:10.1073/pnas.1919564117. PMC 7060714. PMID 32047045.
  189. ^ Paul R. B. Kozowyk; Geeske H. J. Langejans; Gerrit L. Dusseldorp; Marcel J. L. Th. Niekus (2020). "Reply to Schmidt et al.: Interpretation of Paleolithic adhesive production: Combining experimental and paleoenvironmental information". Proceedings of the National Academy of Sciences of the United States of America. 117 (9): 4458–4459. Bibcode:2019PNAS..11622081N. doi:10.1073/pnas.1907828116. PMC 7060735. PMID 32047044.
  190. ^ Jérémy Duveau; Gilles Berillon; Christine Verna; Gilles Laisné; Dominique Cliquet (2019). "The composition of a Neandertal social group revealed by the hominin footprints at Le Rozel (Normandy, France)". Proceedings of the National Academy of Sciences of the United States of America. 116 (39): 19409–19414. Bibcode:2019PNAS..11619409D. doi:10.1073/pnas.1901789116. PMC 6765299. PMID 31501334.
  191. ^ Gili Greenbaum; Wayne M. Getz; Noah A. Rosenberg; Marcus W. Feldman; Erella Hovers; Oren Kolodny (2019). "Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals". Nature Communications. 10 (1): Article number 5003. Bibcode:2019NatCo..10.5003G. doi:10.1038/s41467-019-12862-7. PMC 6825168. PMID 31676766.
  192. ^ Krist Vaesen; Fulco Scherjon; Lia Hemerik; Alexander Verpoorte (2019). "Inbreeding, Allee effects and stochasticity might be sufficient to account for Neanderthal extinction". PLOS ONE. 14 (11): e0225117. Bibcode:2019PLoSO..1425117V. doi:10.1371/journal.pone.0225117. PMC 6880983. PMID 31774843.
  193. ^ Aida Gómez-Robles (2019). "Dental evolutionary rates and its implications for the Neanderthal–modern human divergence". Science Advances. 5 (5): eaaw1268. Bibcode:2019SciA....5.1268G. doi:10.1126/sciadv.aaw1268. PMC 6520022. PMID 31106274.
  194. ^ Kristin L. Krueger; John C. Willman; Gregory J. Matthews; Jean-Jacques Hublin; Alejandro Pérez-Pérez (2019). "Anterior tooth-use behaviors among early modern humans and Neandertals". PLOS ONE. 14 (11): e0224573. Bibcode:2019PLoSO..1424573K. doi:10.1371/journal.pone.0224573. PMC 6880970. PMID 31774826.
  195. ^ Juan I. Morales; Artur Cebrià; Aitor Burguet-Coca; Juan Luis Fernández-Marchena; Gala García-Argudo; Antonio Rodríguez-Hidalgo; María Soto; Sahra Talamo; José-Miguel Tejero; Josep Vallverdú; Josep Maria Fullola (2019). "The Middle-to-Upper Paleolithic transition occupations from Cova Foradada (Calafell, NE Iberia)". PLOS ONE. 14 (5): e0215832. Bibcode:2019PLoSO..1415832M. doi:10.1371/journal.pone.0215832. PMC 6522054. PMID 31095578.
  196. ^ Mayukh Mondal; Jaume Bertranpetit; Oscar Lao (2019). "Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania". Nature Communications. 10 (1): Article number 246. Bibcode:2019NatCo..10..246M. doi:10.1038/s41467-018-08089-7. PMC 6335398. PMID 30651539.
  197. ^ João C. Teixeira; Alan Cooper (2019). "Using hominin introgression to trace modern human dispersals". Proceedings of the National Academy of Sciences of the United States of America. 116 (31): 15327–15332. Bibcode:2019PNAS..11615327T. doi:10.1073/pnas.1904824116. PMC 6681743. PMID 31300536.
  198. ^ Martin Kuhlwilm; Cedric Boeckx (2019). "A catalog of single nucleotide changes distinguishing modern humans from archaic hominins". Scientific Reports. 9 (1): Article number 8463. Bibcode:2019NatSR...9.8463K. doi:10.1038/s41598-019-44877-x. PMC 6560109. PMID 31186485.
  199. ^ Laura L. Colbran; Eric R. Gamazon; Dan Zhou; Patrick Evans; Nancy J. Cox; John A. Capra (2019). "Inferred divergent gene regulation in archaic hominins reveals potential phenotypic differences". Nature Ecology & Evolution. 3 (11): 1598–1606. Bibcode:2019NatEE...3.1598C. doi:10.1038/s41559-019-0996-x. PMC 7046098. PMID 31591491.
  200. ^ Philipp Gunz; Amanda K. Tilot; Katharina Wittfeld; Alexander Teumer; Chin Yang Shapland; Theo G.M. van Erp; Michael Dannemann; Benjamin Vernot; Simon Neubauer; Tulio Guadalupe; Guillén Fernández; Han G. Brunner; Wolfgang Enard; James Fallon; Norbert Hosten; Uwe Völker; Antonio Profico; Fabio Di Vincenzo; Giorgio Manzi; Janet Kelso; Beate St. Pourcain; Jean-Jacques Hublin; Barbara Franke; Svante Pääbo; Fabio Macciardi; Hans J. Grabe; Simon E. Fisher (2019). "Neandertal introgression sheds light on modern human endocranial globularity". Current Biology. 29 (1): 120–127.e5. Bibcode:2019CBio...29E.120G. doi:10.1016/j.cub.2018.10.065. PMC 6380688. PMID 30554901.
  201. ^ Wioletta Nowaczewska; Marcin Binkowski; Anna Maria Kubicka; Janusz Piontek; Antoine Balzeau (2019). "Neandertal-like traits visible in the internal structure of non-supranuchal fossae of some recent Homo sapiens: The problem of their identification in hominins and phylogenetic implications". PLOS ONE. 14 (3): e0213687. Bibcode:2019PLoSO..1413687N. doi:10.1371/journal.pone.0213687. PMC 6421632. PMID 30861048.
  202. ^ Katerina Harvati; Carolin Röding; Abel M. Bosman; Fotios A. Karakostis; Rainer Grün; Chris Stringer; Panagiotis Karkanas; Nicholas C. Thompson; Vassilis Koutoulidis; Lia A. Moulopoulos; Vassilis G. Gorgoulis; Mirsini Kouloukoussa (2019). "Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia". Nature. 571 (7766): 500–504. doi:10.1038/s41586-019-1376-z. PMID 31292546. S2CID 195873640.
  203. ^ Günter Bräuer; Theodoros Pitsios; Dennis Säring; Maximilian von Harling; Frederik Jessen; Angelika Kroll; Christoph Groden (2019). "Virtual reconstruction and comparative analyses of the Middle Pleistocene Apidima 2 cranium (Greece)". The Anatomical Record. 303 (5): 1374–1392. doi:10.1002/ar.24225. PMID 31336034. S2CID 198191481.
  204. ^ Tristan Carter; Daniel A. Contreras; Justin Holcomb; Danica D. Mihailović; Panagiotis Karkanas; Guillaume Guérin; Ninon Taffin; Dimitris Athanasoulis; Christelle Lahaye (2019). "Earliest occupation of the Central Aegean (Naxos), Greece: Implications for hominin and Homo sapiens' behavior and dispersals". Science Advances. 5 (10): eaax0997. Bibcode:2019SciA....5..997C. doi:10.1126/sciadv.aax0997. PMC 6795523. PMID 31663021.
  205. ^ Rodrigo S. Lacruz; Chris B. Stringer; William H. Kimbel; Bernard Wood; Katerina Harvati; Paul O'Higgins; Timothy G. Bromage; Juan-Luis Arsuaga (2019). "The evolutionary history of the human face". Nature Ecology & Evolution. 3 (5): 726–736. Bibcode:2019NatEE...3..726L. doi:10.1038/s41559-019-0865-7. PMID 30988489. S2CID 115161686.
  206. ^ Veronica Mraz; Mike Fisch; Metin I. Eren; C. Owen Lovejoy; Briggs Buchanan (2019). "Thermal engineering of stone increased prehistoric toolmaking skill". Scientific Reports. 9 (1): Article number 14591. Bibcode:2019NatSR...914591M. doi:10.1038/s41598-019-51139-3. PMC 6787202. PMID 31601931.
  207. ^ Eva K. F. Chan; Axel Timmermann; Benedetta F. Baldi; Andy E. Moore; Ruth J. Lyons; Sun-Seon Lee; Anton M. F. Kalsbeek; Desiree C. Petersen; Hannes Rautenbach; Hagen E. A. Förtsch; M. S. Riana Bornman; Vanessa M. Hayes (2019). "Human origins in a southern African palaeo-wetland and first migrations". Nature. 575 (7781): 185–189. Bibcode:2019Natur.575..185C. doi:10.1038/s41586-019-1714-1. PMID 31659339. S2CID 204946938.
  208. ^ Yonatan Sahle; Alison S. Brooks (2019). "Assessment of complex projectiles in the early Late Pleistocene at Aduma, Ethiopia". PLOS ONE. 14 (5): e0216716. Bibcode:2019PLoSO..1416716S. doi:10.1371/journal.pone.0216716. PMC 6508696. PMID 31071181.
  209. ^ Teresa Rito; Daniel Vieira; Marina Silva; Eduardo Conde-Sousa; Luísa Pereira; Paul Mellars; Martin B. Richards; Pedro Soares (2019). "A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration". Scientific Reports. 9 (1): Article number 4728. Bibcode:2019NatSR...9.4728R. doi:10.1038/s41598-019-41176-3. PMC 6426877. PMID 30894612.
  210. ^ Götz Ossendorf; Alexander R. Groos; Tobias Bromm; Minassie Girma Tekelemariam; Bruno Glaser; Joséphine Lesur; Joachim Schmidt; Naki Akçar; Tamrat Bekele; Alemseged Beldados; Sebsebe Demissew; Trhas Hadush Kahsay; Barbara P. Nash; Thomas Nauss; Agazi Negash; Sileshi Nemomissa; Heinz Veit; Ralf Vogelsang; Zerihun Woldu; Wolfgang Zech; Lars Opgenoorth; Georg Miehe (2019). "Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia". Science. 365 (6453): 583–587. Bibcode:2019Sci...365..583O. doi:10.1126/science.aaw8942. PMID 31395781. S2CID 199505803.
  211. ^ Marlize Lombard; Helena Malmström; Carina Schlebusch; Emma M. Svensson; Torsten Günther; Arielle R. Munters; Alexandra Coutinho; Hanna Edlund; Bernhard Zipfel; Mattias Jakobsson (2019). "Genetic data and radiocarbon dating question Plovers Lake as a Middle Stone Age hominin-bearing site". Journal of Human Evolution. 131: 203–209. doi:10.1016/j.jhevol.2019.03.014. S2CID 145834329.
  212. ^ Joshua Kumbani; Justin Bradfield; Neil Rusch; Sarah Wurz (2019). "A functional investigation of southern Cape Later Stone Age artefacts resembling aerophones". Journal of Archaeological Science: Reports. 24: 693–711. Bibcode:2019JArSR..24..693K. doi:10.1016/j.jasrep.2019.02.021. S2CID 166322765.
  213. ^ Louise Humphrey; Alison Freyne; Marieke van de Loosdrecht; Joshua T. Hogue; Elaine Turner; Nick Barton; Abdeljalil Bouzouggar (2019). "Infant funerary behavior and kinship in Pleistocene hunter-gatherers from Morocco". Journal of Human Evolution. 135: Article 102637. doi:10.1016/j.jhevol.2019.07.001. PMID 31421318. S2CID 201057729.
  214. ^ Laura Centi; Iris Groman-Yaroslavski; Neta Friedman; Maya Oron; Marion Prévost; Yossi Zaidner (2019). "The bulb retouchers in the Levant: New insights into Middle Palaeolithic retouching techniques and mobile tool-kit composition". PLOS ONE. 14 (7): e0218859. Bibcode:2019PLoSO..1418859C. doi:10.1371/journal.pone.0218859. PMC 6611594. PMID 31276507.
  215. ^ Ruth Blasco; Jordi Rosell; Antonio Sánchez-Marco; Avi Gopher; Ran Barkai (2019). "Feathers and food: Human-bird interactions at Middle Pleistocene Qesem Cave, Israel". Journal of Human Evolution. 136: Article 102653. doi:10.1016/j.jhevol.2019.102653. PMID 31542561. S2CID 202731186.
  216. ^ R. Blasco; J. Rosell; M. Arilla; A. Margalida; D. Villalba; A. Gopher; R. Barkai (2019). "Bone marrow storage and delayed consumption at Middle Pleistocene Qesem Cave, Israel (420 to 200 ka)". Science Advances. 5 (10): eaav9822. Bibcode:2019SciA....5.9822B. doi:10.1126/sciadv.aav9822. PMC 6785254. PMID 31633015.
  217. ^ Feng Li; Nils Vanwezer; Nicole Boivin; Xing Gao; Florian Ott; Michael Petraglia; Patrick Roberts (2019). "Heading north: Late Pleistocene environments and human dispersals in central and eastern Asia". PLOS ONE. 14 (5): e0216433. Bibcode:2019PLoSO..1416433L. doi:10.1371/journal.pone.0216433. PMC 6541242. PMID 31141504.
  218. ^ Nicolas Zwyns; Cleantha H. Paine; Bolorbat Tsedendorj; Sahra Talamo; Kathryn E. Fitzsimmons; Angaragdulguun Gantumur; Lkhundev Guunii; Odsuren Davakhuu; Damien Flas; Tamara Dogandžić; Nina Doerschner; Frido Welker; J. Christopher Gillam; Joshua B. Noyer; Roshanne S. Bakhtiary; Aurora F. Allshouse; Kevin N. Smith; Arina M. Khatsenovich; Evgeny P. Rybin; Gunchinsuren Byambaa; Jean-Jacques Hublin (2019). "The northern route for human dispersal in Central and Northeast Asia: New evidence from the site of Tolbor-16, Mongolia". Scientific Reports. 9 (1): Article number 11759. Bibcode:2019NatSR...911759Z. doi:10.1038/s41598-019-47972-1. PMC 6692324. PMID 31409814.
  219. ^ William Rendu; Sylvain Renou; Marie-Cécile Soulier; Solange Rigaud; Morgan Roussel; Marie Soressi (2019). "Subsistence strategy changes during the Middle to Upper Paleolithic transition reveals specific adaptations of Human Populations to their environment". Scientific Reports. 9 (1): Article number 15817. Bibcode:2019NatSR...915817R. doi:10.1038/s41598-019-50647-6. PMC 6825241. PMID 31676799.
  220. ^ Miguel Cortés-Sánchez; Francisco J. Jiménez-Espejo; María D. Simón-Vallejo; Chris Stringer; María Carmen Lozano Francisco; Antonio García-Alix; José L. Vera Peláez; Carlos P. Odriozola; José A. Riquelme-Cantal; Rubén Parrilla Giráldez; Adolfo Maestro González; Naohiko Ohkouchi; Arturo Morales-Muñiz (2019). "An early Aurignacian arrival in southwestern Europe". Nature Ecology & Evolution. 3 (2): 207–212. Bibcode:2019NatEE...3..207C. doi:10.1038/s41559-018-0753-6. PMID 30664696. S2CID 58571988.
  221. ^ Paloma de la Peña (2019). "Dating on its own cannot resolve hominin occupation patterns". Nature Ecology & Evolution. 3 (5): 712. Bibcode:2019NatEE...3..712D. doi:10.1038/s41559-019-0886-2. PMID 30988497. S2CID 116861216.
  222. ^ Lars Anderson; Natasha Reynolds; Nicolas Teyssandier (2019). "No reliable evidence for a very early Aurignacian in Southern Iberia". Nature Ecology & Evolution. 3 (5): 713. Bibcode:2019NatEE...3..713A. doi:10.1038/s41559-019-0885-3. PMID 30988496. S2CID 115153460.
  223. ^ Miguel Cortés-Sánchez; Francisco J. Jiménez-Espejo; María D. Simón-Vallejo; Chris Stringer; María Carmen Lozano Francisco; Antonio García-Alix; José L. Vera Peláez; Carlos P. Odriozola; José A. Riquelme-Cantal; Rubén Parrilla Giráldez; Adolfo Maestro González; Naohiko Ohkouchi; Arturo Morales-Muñiz (2019). "Reply to 'Dating on its own cannot resolve hominin occupation patterns' and 'No reliable evidence for a very early Aurignacian in Southern Iberia'". Nature Ecology & Evolution. 3 (5): 714–715. Bibcode:2019NatEE...3..714C. doi:10.1038/s41559-019-0887-1. PMID 30988498. S2CID 115153407.
  224. ^ Isabell Schmidt; Andreas Zimmermann (2019). "Population dynamics and socio-spatial organization of the Aurignacian: Scalable quantitative demographic data for western and central Europe". PLOS ONE. 14 (2): e0211562. Bibcode:2019PLoSO..1411562S. doi:10.1371/journal.pone.0211562. PMC 6373918. PMID 30759115.
  225. ^ Gianpiero Di Maida; Marcello A. Mannino; Ben Krause-Kyora; Theis Zetner Trolle Jensen; Sahra Talamo (2019). "Radiocarbon dating and isotope analysis on the purported Aurignacian skeletal remains from Fontana Nuova (Ragusa, Italy)". PLOS ONE. 14 (3): e0213173. Bibcode:2019PLoSO..1413173D. doi:10.1371/journal.pone.0213173. PMC 6426221. PMID 30893326.
  226. ^ Katsuhiro Sano; Simona Arrighi; Chiaramaria Stani; Daniele Aureli; Francesco Boschin; Ivana Fiore; Vincenzo Spagnolo; Stefano Ricci; Jacopo Crezzini; Paolo Boscato; Monica Gala; Antonio Tagliacozzo; Giovanni Birarda; Lisa Vaccari; Annamaria Ronchitelli; Adriana Moroni; Stefano Benazzi (2019). "The earliest evidence for mechanically delivered projectile weapons in Europe". Nature Ecology & Evolution. 3 (10): 1409–1414. Bibcode:2019NatEE...3.1409S. doi:10.1038/s41559-019-0990-3. PMC 6823051. PMID 31558829.
  227. ^ Elena F. Kranioti; Dan Grigorescu; Katerina Harvati (2019). "State of the art forensic techniques reveal evidence of interpersonal violence ca. 30,000 years ago". PLOS ONE. 14 (7): e0216718. Bibcode:2019PLoSO..1416718K. doi:10.1371/journal.pone.0216718. PMC 6608943. PMID 31269019.
  228. ^ Elena-Cristina Nițu; Marin Cârciumaru; Adrian Nicolae; Ovidiu Cîrstina; Florin Ionuț Lupu; Marian Leu (2019). "Mobility and social identity in the Mid Upper Paleolithic: New personal ornaments from Poiana Cireșului (Piatra Neamț, Romania)". PLOS ONE. 14 (4): e0214932. Bibcode:2019PLoSO..1414932N. doi:10.1371/journal.pone.0214932. PMC 6481798. PMID 31017924.
  229. ^ Federico Lugli; Anna Cipriani; Giulia Capecchi; Stefano Ricci; Francesco Boschin; Paolo Boscato; Paola Iacumin; Federica Badino; Marcello A. Mannino; Sahra Talamo; Michael P. Richards; Stefano Benazzi; Annamaria Ronchitelli (2019). "Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy". Nature Ecology & Evolution. 3 (6): 905–911. Bibcode:2019NatEE...3..905L. doi:10.1038/s41559-019-0900-8. hdl:11585/687131. PMID 31086279. S2CID 152283549.
  230. ^ Colin D. Wren; Ariane Burke (2019). "Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe". PLOS ONE. 14 (6): e0217996. Bibcode:2019PLoSO..1417996W. doi:10.1371/journal.pone.0217996. PMC 6583941. PMID 31216315.
  231. ^ Marco Romano; Paolo Citton; Isabella Salvador; Daniele Arobba; Ivano Rellini; Marco Firpo; Fabio Negrino; Marta Zunino; Elisabetta Starnini; Marco Avanzini (2019). "A multidisciplinary approach to a unique palaeolithic human ichnological record from Italy (Bàsura Cave)". eLife. 8: e45204. doi:10.7554/eLife.45204. PMC 6548500. PMID 31084704.
  232. ^ Samantha L. Cox; Christopher B. Ruff; Robert M. Maier; Iain Mathieson (2019). "Genetic contributions to variation in human stature in prehistoric Europe". Proceedings of the National Academy of Sciences of the United States of America. 116 (43): 21484–21492. Bibcode:2019PNAS..11621484C. doi:10.1073/pnas.1910606116. PMC 6815153. PMID 31594846.
  233. ^ Thibaut Devièse; Diyendo Massilani; Seonbok Yi; Daniel Comeskey; Sarah Nagel; Birgit Nickel; Erika Ribechini; Jungeun Lee; Damdinsuren Tseveendorj; Byambaa Gunchinsuren; Matthias Meyer; Svante Pääbo; Tom Higham (2019). "Compound-specific radiocarbon dating and mitochondrial DNA analysis of the Pleistocene hominin from Salkhit Mongolia". Nature Communications. 10 (1): Article number 274. Bibcode:2019NatCo..10..274D. doi:10.1038/s41467-018-08018-8. PMC 6353915. PMID 30700710.
  234. ^ Hirofumi Matsumura; Hsiao-chun Hung; Charles Higham; Chi Zhang; Mariko Yamagata; Lan Cuong Nguyen; Zhen Li; Xue-chun Fan; Truman Simanjuntak; Adhi Agus Oktaviana; Jia-ning He; Chung-yu Chen; Chien-kuo Pan; Gang He; Guo-ping Sun; Wei-jin Huang; Xin-wei Li; Xing-tao Wei; Kate Domett; Siân Halcrow; Kim Dung Nguyen; Hoang Hiep Trinh; Chi Hoang Bui; Khanh Trung Kien Nguyen; Andreas Reinecke (2019). "Craniometrics reveal "two layers" of prehistoric human dispersal in eastern Eurasia". Scientific Reports. 9 (1): Article number 1451. Bibcode:2019NatSR...9.1451M. doi:10.1038/s41598-018-35426-z. PMC 6363732. PMID 30723215.
  235. ^ Yanhua Song; Stefano Grimaldi; Fabio Santaniello; David J. Cohen; Jinming Shi; Ofer Bar-Yosef (2019). "Re-thinking the evolution of microblade technology in East Asia: Techno-functional understanding of the lithic assemblage from Shizitan 29 (Shanxi, China)". PLOS ONE. 14 (2): e0212643. Bibcode:2019PLoSO..1412643S. doi:10.1371/journal.pone.0212643. PMC 6388932. PMID 30802253.
  236. ^ Oshan Wedage; Noel Amano; Michelle C. Langley; Katerina Douka; James Blinkhorn; Alison Crowther; Siran Deraniyagala; Nikos Kourampas; Ian Simpson; Nimal Perera; Andrea Picin; Nicole Boivin; Michael Petraglia; Patrick Roberts (2019). "Specialized rainforest hunting by Homo sapiens ~45,000 years ago". Nature Communications. 10 (1): Article number 739. doi:10.1038/s41467-019-08623-1. PMC 6381157. PMID 30783099.
  237. ^ Oshan Wedage; Andrea Picin; James Blinkhorn; Katerina Douka; Siran Deraniyagala; Nikos Kourampas; Nimal Perera; Ian Simpson; Nicole Boivin; Michael Petraglia; Patrick Roberts (2019). "Microliths in the South Asian rainforest ~45-4 ka: New insights from Fa-Hien Lena Cave, Sri Lanka". PLOS ONE. 14 (10): e0222606. Bibcode:2019PLoSO..1422606W. doi:10.1371/journal.pone.0222606. PMC 6774521. PMID 31577796.
  238. ^ Wei Liao; Song Xing; Dawei Li; María Martinón-Torres; Xiujie Wu; Christophe Soligo; José María Bermúdez de Castro; Wei Wang; Wu Liu (2019). "Mosaic dental morphology in a terminal Pleistocene hominin from Dushan Cave in southern China". Scientific Reports. 9 (1): Article number 2347. Bibcode:2019NatSR...9.2347L. doi:10.1038/s41598-019-38818-x. PMC 6382942. PMID 30787352.
  239. ^ Martin Sikora; Vladimir V. Pitulko; Vitor C. Sousa; Morten E. Allentoft; Lasse Vinner; Simon Rasmussen; Ashot Margaryan; Peter de Barros Damgaard; Constanza de la Fuente; Gabriel Renaud; Melinda A. Yang; Qiaomei Fu; Isabelle Dupanloup; Konstantinos Giampoudakis; David Nogués-Bravo; Carsten Rahbek; Guus Kroonen; Michaël Peyrot; Hugh McColl; Sergey V. Vasilyev; Elizaveta Veselovskaya; Margarita Gerasimova; Elena Y. Pavlova; Vyacheslav G. Chasnyk; Pavel A. Nikolskiy; Andrei V. Gromov; Valeriy I. Khartanovich; Vyacheslav Moiseyev; Pavel S. Grebenyuk; Alexander Yu. Fedorchenko; Alexander I. Lebedintsev; Sergey B. Slobodin; Boris A. Malyarchuk; Rui Martiniano; Morten Meldgaard; Laura Arppe; Jukka U. Palo; Tarja Sundell; Kristiina Mannermaa; Mikko Putkonen; Verner Alexandersen; Charlotte Primeau; Nurbol Baimukhanov; Ripan S. Malhi; Karl-Göran Sjögren; Kristian Kristiansen; Anna Wessman; Antti Sajantila; Marta Mirazon Lahr; Richard Durbin; Rasmus Nielsen; David J. Meltzer; Laurent Excoffier; Eske Willerslev (2019). "The population history of northeastern Siberia since the Pleistocene" (PDF). Nature. 570 (7760): 182–188. Bibcode:2019Natur.570..182S. doi:10.1038/s41586-019-1279-z. PMID 31168093. S2CID 174809069. Archived from the original (PDF) on 2019-12-12. Retrieved 2019-09-24.
  240. ^ Maxime Aubert; Rustan Lebe; Adhi Agus Oktaviana; Muhammad Tang; Basran Burhan; Hamrullah; Andi Jusdi; Abdullah; Budianto Hakim; Jian-xin Zhao; I. Made Geria; Priyatno Hadi Sulistyarto; Ratno Sardi; Adam Brumm (2019). "Earliest hunting scene in prehistoric art". Nature. 576 (7787): 442–445. Bibcode:2019Natur.576..442A. doi:10.1038/s41586-019-1806-y. PMID 31827284. S2CID 209311825.
  241. ^ Michael I. Bird; Scott A. Condie; Sue O'Connor; Damien O'Grady; Christian Reepmeyer; Sean Ulm; Mojca Zega; Frédérik Saltré; Corey J. A. Bradshaw (2019). "Early human settlement of Sahul was not an accident". Scientific Reports. 9 (1): Article number 8220. Bibcode:2019NatSR...9.8220B. doi:10.1038/s41598-019-42946-9. PMC 6579762. PMID 31209234.
  242. ^ Sofía C. Samper Carro; Felicity Gilbert; David Bulbeck; Sue O'Connor; Julien Louys; Nigel Spooner; Danielle Questiaux; Lee Arnold; Gilbert J. Price; Rachel Wood; Mahirta (2019). "Somewhere beyond the sea: Human cranial remains from the Lesser Sunda Islands (Alor Island, Indonesia) provide insights on Late Pleistocene peopling of Island Southeast Asia". Journal of Human Evolution. 134: Article 102638. doi:10.1016/j.jhevol.2019.07.002. hdl:10072/391531. PMID 31446971. S2CID 201211409.
  243. ^ Corey J. A. Bradshaw; Sean Ulm; Alan N. Williams; Michael I. Bird; Richard G. Roberts; Zenobia Jacobs; Fiona Laviano; Laura S. Weyrich; Tobias Friedrich; Kasih Norman; Frédérik Saltré (2019). "Minimum founding populations for the first peopling of Sahul". Nature Ecology & Evolution. 3 (7): 1057–1063. Bibcode:2019NatEE...3.1057B. doi:10.1038/s41559-019-0902-6. PMID 31209287. S2CID 189927521.
  244. ^ Michelle C. Langley; Chris Clarkson; Sean Ulm (2019). "Symbolic expression in Pleistocene Sahul, Sunda, and Wallacea" (PDF). Quaternary Science Reviews. 221: Article 105883. Bibcode:2019QSRv..22105883L. doi:10.1016/j.quascirev.2019.105883. S2CID 202174303.
  245. ^ Frédérik Saltré; Joël Chadoeuf; Katharina J. Peters; Matthew C. McDowell; Tobias Friedrich; Axel Timmermann; Sean Ulm; Corey J. A. Bradshaw (2019). "Climate-human interaction associated with southeast Australian megafauna extinction patterns". Nature Communications. 10 (1): Article number 5311. Bibcode:2019NatCo..10.5311S. doi:10.1038/s41467-019-13277-0. PMC 6876570. PMID 31757942.
  246. ^ Thomaz Pinotti; Anders Bergström; Maria Geppert; Matt Bawn; Dominique Ohasi; Wentao Shi; Daniela R. Lacerda; Arne Solli; Jakob Norstedt; Kate Reed; Kim Dawtry; Fabricio González-Andrade; Cesar Paz-y-Miño; Susana Revollo; Cinthia Cuellar; Marilza S. Jota; José E. Santos Jr.; Qasim Ayub; Toomas Kivisild; José R. Sandoval; Ricardo Fujita; Yali Xue; Lutz Roewer; Fabrício R. Santos; Chris Tyler-Smith (2019). "Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of Native American founders". Current Biology. 29 (1): 149–157.e3. Bibcode:2019CBio...29E.149P. doi:10.1016/j.cub.2018.11.029. hdl:20.500.12727/6107. PMID 30581024. S2CID 56569896.
  247. ^ Michael R. Waters (2019). "Late Pleistocene exploration and settlement of the Americas by modern humans". Science. 365 (6449): eaat5447. Bibcode:2019Sci...365.5447W. doi:10.1126/science.aat5447. PMID 31296740. S2CID 195893468.
  248. ^ Loren G. Davis; David B. Madsen; Lorena Becerra-Valdivia; Thomas Higham; David A. Sisson; Sarah M. Skinner; Daniel Stueber; Alexander J. Nyers; Amanda Keen-Zebert; Christina Neudorf; Melissa Cheyney; Masami Izuho; Fumie Iizuka; Samuel R. Burns; Clinton W. Epps; Samuel C. Willis; Ian Buvit (2019). "Late Upper Paleolithic occupation at Cooper's Ferry, Idaho, USA, ~16,000 years ago". Science. 365 (6456): 891–897. Bibcode:2019Sci...365..891D. doi:10.1126/science.aax9830. PMID 31467216. S2CID 201672463.
  249. ^ Andrea Cucina; Ruben Herrera Atoche; James C. Chatters (2019). "Oral health and diet of a young Late Pleistocene woman from Quintana Roo, Mexico". American Journal of Physical Anthropology. 170 (2): 246–259. doi:10.1002/ajpa.23884. PMID 31222724. S2CID 195186586.
  250. ^ Karen Moreno; Juan Enrique Bostelmann; Cintia Macías; Ximena Navarro-Harris; Ricardo De Pol-Holz; Mario Pino (2019). "A late Pleistocene human footprint from the Pilauco archaeological site, northern Patagonia, Chile". PLOS ONE. 14 (4): e0213572. Bibcode:2019PLoSO..1413572M. doi:10.1371/journal.pone.0213572. PMC 6481816. PMID 31017908.
  251. ^ Keith M. Prufer; Asia V. Alsgaard; Mark Robinson; Clayton R. Meredith; Brendan J. Culleton; Timothy Dennehy; Shelby Magee; Bruce B. Huckell; W. James Stemp; Jaime J. Awe; Jose M. Capriles; Douglas J. Kennett (2019). "Linking late Paleoindian stone tool technologies and populations in North, Central and South America". PLOS ONE. 14 (7): e0219812. Bibcode:2019PLoSO..1419812P. doi:10.1371/journal.pone.0219812. PMC 6638942. PMID 31318917.
  252. ^ José M. Capriles; Umberto Lombardo; Blaine Maley; Carlos Zuna; Heinz Veit; Douglas J. Kennett (2019). "Persistent Early to Middle Holocene tropical foraging in southwestern Amazonia". Science Advances. 5 (4): eaav5449. Bibcode:2019SciA....5.5449C. doi:10.1126/sciadv.aav5449. PMC 6482008. PMID 31032413.
  253. ^ Kristina Douglass; Sean Hixon; Henry T. Wright; Laurie R. Godfrey; Brooke E. Crowley; Barthélémy Manjakahery; Tanambelo Rasolondrainy; Zoë Crossland; Chantal Radimilahy (2019). "A critical review of radiocarbon dates clarifies the human settlement of Madagascar". Quaternary Science Reviews. 221: Article 105878. Bibcode:2019QSRv..22105878D. doi:10.1016/j.quascirev.2019.105878. S2CID 197558812.
  254. ^ Michal Feldman; Eva Fernández-Domínguez; Luke Reynolds; Douglas Baird; Jessica Pearson; Israel Hershkovitz; Hila May; Nigel Goring-Morris; Marion Benz; Julia Gresky; Raffaela A. Bianco; Andrew Fairbairn; Gökhan Mustafaoğlu; Philipp W. Stockhammer; Cosimo Posth; Wolfgang Haak; Choongwon Jeong; Johannes Krause (2019). "Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia". Nature Communications. 10 (1): Article number 1218. Bibcode:2019NatCo..10.1218F. doi:10.1038/s41467-019-09209-7. PMC 6425003. PMID 30890703.
  255. ^ Laure Dubreuil; Ahiad Ovadia; Ruth Shahack-Gross; Leore Grosman (2019). "Evidence of ritual breakage of a ground stone tool at the Late Natufian site of Hilazon Tachtit cave (12,000 years ago)". PLOS ONE. 14 (10): e0223370. Bibcode:2019PLoSO..1423370D. doi:10.1371/journal.pone.0223370. PMC 6795415. PMID 31618233.
  256. ^ Jonathan Santana; Francisco Javier Rodríguez-Santos; María Dolores Camalich-Massieu; Dimas Martín-Socas; Rosa Fregel (2019). "Aggressive or funerary cannibalism? Skull-cup and human bone manipulation in Cueva de El Toro (Early Neolithic, southern Iberia)" (PDF). American Journal of Physical Anthropology. 169 (1): 31–54. doi:10.1002/ajpa.23805. PMID 30802307. S2CID 73501019.
  257. ^ Vanessa Villalba-Mouco; Marieke S. van de Loosdrecht; Cosimo Posth; Rafael Mora; Jorge Martínez-Moreno; Manuel Rojo-Guerra; Domingo C. Salazar-García; José I. Royo-Guillén; Michael Kunst; Hélène Rougier; Isabelle Crevecoeur; Héctor Arcusa-Magallón; Cristina Tejedor-Rodríguez; Iñigo García-Martínez de Lagrán; Rafael Garrido-Pena; Kurt W. Alt; Choongwon Jeong; Stephan Schiffels; Pilar Utrilla; Johannes Krause; Wolfgang Haak (2019). "Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula". Current Biology. 29 (7): 1169–1177.e7. Bibcode:2019CBio...29E1169V. doi:10.1016/j.cub.2019.02.006. hdl:10261/208851. PMID 30880015. S2CID 76663708.
  258. ^ Javier Fernández-López de Pablo; Mario Gutiérrez-Roig; Madalena Gómez-Puche; Rowan McLaughlin; Fabio Silva; Sergi Lozano (2019). "Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia". Nature Communications. 10 (1): Article number 1872. Bibcode:2019NatCo..10.1872F. doi:10.1038/s41467-019-09833-3. PMC 6478856. PMID 31015468.
  259. ^ Philippe Crombé (2019). "Mesolithic projectile variability along the southern North Sea basin (NW Europe): Hunter-gatherer responses to repeated climate change at the beginning of the Holocene". PLOS ONE. 14 (7): e0219094. Bibcode:2019PLoSO..1419094C. doi:10.1371/journal.pone.0219094. PMC 6636730. PMID 31314774.
  260. ^ Stefania Vai; Stefania Sarno; Martina Lari; Donata Luiselli; Giorgio Manzi; Marina Gallinaro; Safaa Mataich; Alexander Hübner; Alessandra Modi; Elena Pilli; Mary Anne Tafuri; David Caramelli; Savino di Lernia (2019). "Ancestral mitochondrial N lineage from the Neolithic 'green' Sahara". Scientific Reports. 9 (1): Article number 3530. Bibcode:2019NatSR...9.3530V. doi:10.1038/s41598-019-39802-1. PMC 6401177. PMID 30837540.
  261. ^ Belen Lorente-Galdos; Oscar Lao; Gerard Serra-Vidal; Gabriel Santpere; Lukas F. K. Kuderna; Lara R. Arauna; Karima Fadhlaoui-Zid; Ville N. Pimenoff; Himla Soodyall; Pierre Zalloua; Tomas Marques-Bonet; David Comas (2019). "Whole-genome sequence analysis of a Pan African set of samples reveals archaic gene flow from an extinct basal population of modern humans into sub-Saharan populations". Genome Biology. 20 (1): Article 77. doi:10.1186/s13059-019-1684-5. PMC 6485163. PMID 31023378.
  262. ^ Gerard Serra-Vidal; Marcel Lucas-Sanchez; Karima Fadhlaoui-Zid; Asmahan Bekada; Pierre Zalloua; David Comas (2019). "Heterogeneity in Palaeolithic population continuity and Neolithic expansion in North Africa". Current Biology. 29 (22): 3953–3959.e4. Bibcode:2019CBio...29E3953S. doi:10.1016/j.cub.2019.09.050. PMID 31679935. S2CID 204972040.
  263. ^ G. González-Fortes; F. Tassi; E. Trucchi; K. Henneberger; J. L. A. Paijmans; D. Díez-del-Molino; H. Schroeder; R. R. Susca; C. Barroso-Ruíz; F. J. Bermudez; C. Barroso-Medina; A. M. S. Bettencourt; H. A. Sampaio; A. Grandal-d'Anglade; A. Salas; A. de Lombera-Hermida; R. Fabregas Valcarce; M. Vaquero; S. Alonso; M. Lozano; X. P. Rodríguez-Alvarez; C. Fernández-Rodríguez; A. Manica; M. Hofreiter; G. Barbujani (2019). "A western route of prehistoric human migration from Africa into the Iberian Peninsula". Proceedings of the Royal Society B: Biological Sciences. 286 (1895): Article ID 20182288. doi:10.1098/rspb.2018.2288. PMC 6364581. PMID 30963949.
  264. ^ Iñigo Olalde; Swapan Mallick; Nick Patterson; Nadin Rohland; Vanessa Villalba-Mouco; Marina Silva; Katharina Dulias; Ceiridwen J. Edwards; Francesca Gandini; Maria Pala; Pedro Soares; Manuel Ferrando-Bernal; Nicole Adamski; Nasreen Broomandkhoshbacht; Olivia Cheronet; Brendan J. Culleton; Daniel Fernandes; Ann Marie Lawson; Matthew Mah; Jonas Oppenheimer; Kristin Stewardson; Zhao Zhang; Juan Manuel Jiménez Arenas; Isidro Jorge Toro Moyano; Domingo C. Salazar-García; Pere Castanyer; Marta Santos; Joaquim Tremoleda; Marina Lozano; et al. (2019). "The genomic history of the Iberian Peninsula over the past 8000 years". Science. 363 (6432): 1230–1234. Bibcode:2019Sci...363.1230O. doi:10.1126/science.aav4040. PMC 6436108. PMID 30872528.
  265. ^ Vagheesh M. Narasimhan; Nick Patterson; Priya Moorjani; Nadin Rohland; Rebecca Bernardos; Swapan Mallick; Iosif Lazaridis; Nathan Nakatsuka; Iñigo Olalde; Mark Lipson; Alexander M. Kim; Luca M. Olivieri; Alfredo Coppa; Massimo Vidale; James Mallory; Vyacheslav Moiseyev; Egor Kitov; Janet Monge; Nicole Adamski; Neel Alex; Nasreen Broomandkhoshbacht; Francesca Candilio; Kimberly Callan; Olivia Cheronet; Brendan J. Culleton; Matthew Ferry; Daniel Fernandes; Suzanne Freilich; Beatriz Gamarra; et al. (2019). "The formation of human populations in South and Central Asia". Science. 365 (6457): eaat7487. doi:10.1126/science.aat7487. PMC 6822619. PMID 31488661.
  266. ^ Pavel Flegontov; N. Ezgi Altınışık; Piya Changmai; Nadin Rohland; Swapan Mallick; Nicole Adamski; Deborah A. Bolnick; Nasreen Broomandkhoshbacht; Francesca Candilio; Brendan J. Culleton; Olga Flegontova; T. Max Friesen; Choongwon Jeong; Thomas K. Harper; Denise Keating; Douglas J. Kennett; Alexander M. Kim; Thiseas C. Lamnidis; Ann Marie Lawson; Iñigo Olalde; Jonas Oppenheimer; Ben A. Potter; Jennifer Raff; Robert A. Sattler; Pontus Skoglund; Kristin Stewardson; Edward J. Vajda; Sergey Vasilyev; Elizaveta Veselovskaya; M. Geoffrey Hayes; Dennis H. O'Rourke; Johannes Krause; Ron Pinhasi; David Reich; Stephan Schiffels (2019). "Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America". Nature. 570 (7760): 236–240. Bibcode:2019Natur.570..236F. doi:10.1038/s41586-019-1251-y. PMC 6942545. PMID 31168094.
  267. ^ D. E. Blasi; S. Moran; S. R. Moisik; P. Widmer; D. Dediu; B. Bickel (2019). "Human sound systems are shaped by post-Neolithic changes in bite configuration". Science. 363 (6432): eaav3218. doi:10.1126/science.aav3218. PMID 30872490. S2CID 78094922.
  268. ^ Lucas Stephens; Dorian Fuller; Nicole Boivin; Torben Rick; Nicolas Gauthier; Andrea Kay; Ben Marwick; Chelsey Geralda; Denise Armstrong; C. Michael Barton; Tim Denham; Kristina Douglass; Jonathan Driver; Lisa Janz; Patrick Roberts; J. Daniel Rogers; Heather Thakar; Mark Altaweel; Amber L. Johnson; Maria Marta Sampietro Vattuone; Mark Aldenderfer; Sonia Archila; Gilberto Artioli; Martin T. Bale; Timothy Beach; Ferran Borrell; Todd Braje; Philip I. Buckland; Nayeli Guadalupe Jiménez Cano; et al. (2019). "Archaeological assessment reveals Earth's early transformation through land use". Science. 365 (6456): 897–902. Bibcode:2019Sci...365..897S. doi:10.1126/science.aax1192. hdl:10150/634688. PMID 31467217. S2CID 201674203.
  269. ^ Deke Xu; Houyuan Lu; Guoqiang Chu; Li Liu; Caiming Shen; Fengjiang Li; Can Wang; Naiqin Wu (2019). "Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia". Nature Communications. 10 (1): Article number 4105. Bibcode:2019NatCo..10.4105X. doi:10.1038/s41467-019-12138-0. PMC 6739325. PMID 31511523.
  270. ^ Tsuneo Nakajima; Mark J. Hudson; Junzo Uchiyama; Keisuke Makibayashi; Juzhong Zhang (2019). "Common carp aquaculture in Neolithic China dates back 8,000 years". Nature Ecology & Evolution. 3 (10): 1415–1418. Bibcode:2019NatEE...3.1415N. doi:10.1038/s41559-019-0974-3. PMID 31527727. S2CID 202579732.